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Generalized Grassmann numbers x; (i = 1,2,...,n) are defined as those satisfying the relations
x,x; = n;x;x; with n, = — (4 or —)fori=j (i#)). Ordinary Grassmann numbers
correspond to a special case 7, = — for all /, j. Mathematical properties of such numbers are
discussed in detail, and it is found that most of the results known for the ordinary case can
naturally be extended to the general case. Applications are made to a description of general Fermi
systems where the commutation relations belong to an arbitrary anomalous case.

. INTRODUCTION

Recently, Grassmann algebras' have been extensively
utilized in the description of Fermi systems. This is due to
their specific property such that Grassmann numbers x; can
play the role of, so to speak, the classical counterparts of
quantum Fermi operators @, or a] satisfying the commuta-
tion relations of the normal case, i.e., [4,,a]]. =8, and
[a:,a;]. = Owith i, j = 1,2,---,n. On the other hand, it is also
known? that Fermi operators a, and a] may alternatively
satisfy the commutation relations of anomalous cases which
are specified by a set of relative signatures n; = 7,

[a.a]]-,, =5 .y
with7; = — (— or + ) fori =/ (i#). Corresponding to

this, we may thus consider new numbers x; such that the
commutation relations are given by

i [af’aj ] = Tij = O’

(1.2)

In what follows x;’s of this kind will be called generalized
Grassmann numbers. They form a generalized Grassmann
algebra. Evidently, ordinary Grassmann numbers corre-
spond to a particular case such that all , = — . The pur-
pose of the present paper is to study mathematical properties
of these numbers and to discuss some possible applications
to Fermi systems. The adjectives ““Grassmann’ and “‘gener-
alized Grassmann’" will hereafter be abbreviated to “G” and
“gG,” respectively.

One of the most important properties of gG numbers
consists in the relationship between different x,’s specified
by 1,;’s. Throughout the following discussion we shall al-
ways work within the framework of a given set of 7, ’s, name-
ly, we shall not be concerned simultaneously with other gG
numbers having different sets of relative signatures 7}, 7/ ,

.- . The x,’s satisfying Eq. (1.2) are said to form a gG vector:
x = (x,X,,,x, ). We shall consider below a number of such
vectors X = (X ,X,,,X,, ), X' = (X} ,X} %X, )+, which are all
subject to

[%;, xj]_% =0 or x,x; = ;XX -

XX = NyXp Xy X[X] =X X[, X, X] = 1,XX, . (1.3)

The present paper is arranged as follows: In Sec. II we
study algebraic properties of gG numbers. A number of basic
lemmas and theorems are proved concerning gG matrices
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and gG determinants. Section III is devoted to a discussion
of “‘analytical” properties, including differentiation, integra-
tion, Fourier transformations, and & functions. Transforma-
tions of gG numbers are discussed in Sec. IV. Lastly, in Sec.
V, the algebras are applied to general Fermi systems where
the operators g; and a! satisfy the commutation relations
with an arbitrary set of 7,,’s [Eq. (1.1)]. Coherent states are
explicitly constructed for a)’s as well as for a,’s. It is then
found that the quantum mechanics of Fermi systems can be
formulated in what we shall call the gG representation.

il. ALGEBRAIC PROPERTIES: gG MATRICES, gG
DETERMINANTS

Let us begin by introducing gG matrices M, M ',.-. . A
gG matrix M is defined as one whose ij element M, satisfies

Mx, =nuqux.M; ,
Q.1
MM, =077 77le M

The quantity M, has the same commutation property as that
of x,x; when commuted with other quantities. More general-
ly, any quantities TJ’:]’: which have the same commutation
property as that of x, x; «x; x; - when commuted with oth-
er quantities will hereafter be referred to as gG tensors. The
product of M and M’ is defined as usual by

(MM"); = M; M ;,, where and in the following the summa-
tion convention is applied only to those indices that are re-
peated in factors other than n7,;’s. It is clear that MM " alsois a
gG matrix,

A setof n numbers§ = (§),£,,+,£,) with§, = M, x,isa
gG vector. Forming a product of such &,’s and considering
the property (x;)* = 0 (no summation over /), we define the
gG determinant corresponding to M as follows®:

M x, Y My, x; )M, x; y=detM-x x,x, . (2.2)
From the definition it immediately follows that

det(MM ') = detM-detM ',
(2.3)
[detM, x;] = [detM, M ] =0.

The transpose M " of M, defined by (M "),=M,,, is a gG
matrix. However, relations such as
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MM ) =M "M7, detM " = detM, do not necessarily
hold. Thus, we introduce another gG matrix M related to M
by

My=—n,(M7),, @4)
for which there holds the following:
Theorem 1:
P o~ —
MM"Y=M'M,
_ .5
detM = detM.

Proof: Since Eq. (2.5), follows immediately from the
definition (2.4), let us prove Eq. (2.5), only.* By virtue of
(x;)* = O we can also write Eq. (2.2) in the form

detM-x x,---x,

= 2 (Ml,rlxrl )(MZ,TZxTZ)"'(Mn n rn)
TES,

= 2 W(T)(M7 l1,1'xl)(j‘l‘r"2,2'x2)"'(Al‘r Yrnn ’l) ’
’ (2.6)

where 7 stands for an element (.} 37" ) of the symmetric
group §, of order a!, and 7(7) is the signature function de-
fined by

XXX, =R(TIX, 0 X, 10X, 2.7
Similarly, for M we have
det]q-xlxz---x,1

= Zﬂ(f)(M XM, x) (M, X)) (2.8)

On the rlght-hand side of Eq. (2.8) we collect all x,’s at the
right end, use Eq. (2.7) there, and then return them to the
original positions, i.e.,

Eq. 2.8) = Z V1G] | (G0 A

i<j

><Mr MT XXX,

122"
= E H(ni,r 'j77ij)Mr "

TeS, i<j

XM 2 M X X X

r

= z H(ﬂn ,”u)H(’?

TES, 1</ i>f

X(M X 'l)
X(M 122% ‘2) (M th 'n)
_ZH(W.T ‘J)(M 11X '1)

TeS, z;é_/

X(Mr ‘2,2x1 l2)".(1‘47 'n,nx‘r 'n)’

n

Yir 'j’r,i,r "j)

2.8)

where use is made of the relation I1,_;7, =1IL,_;n_., ..
In Eq. (2.8") we replace 7' by 7, use Eq. (2.4) to obtain

M., = —n,.M, ., and then take account of the relation
7, =M,;1m; = (—1)". The result is
det!"’?-xlxz»--x,1

= z (Ml Tlxr] )(MZ 7'2xr2) ( n,Tn Tfl)’ (2'8”)
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which, according to Eq. (2.6), equals detM-x x,---x, . Q.E.D.
Further, we have the following:
Theorem 2: Given a real parameter s, there holds the
relation

det[exp(sM )] = exp(s TrM), 2.9

where the equality means that when expanded as power se-
ries in s, the terms of the same degree in s on both sides are
equal to each other, and TrtM =2, M.

We shall first prove the following lemma, which is well
known for ordinary determinants:

Lemma 1: Let K be a gG matrix such that the elements
K,; for the & th row are given as

Kkj = Mkj + ij (J = 1’2,"””): (210)
and the elements K; (i#k ) for other rows are given as

Ki=M,=L,. (2.10)
Then, there holds the relation
detK = detM + detL. 2.11)

Proof:
detK-x,x,X,,
=Ky, %) (K 1, %, WMy, + Ly )x; 3

XK X, Ky, x;) (2.12)
=(K1j|xj,)"'(Kk41,jk K l)(Mkj,‘xjk)
XKy sy, X, DKy X))
+(Klj,xj,) '(Kk—l“ i ,)( kj,(xjk)
XKy rg,, X, otk x;)
= (detM + detL )x x,---x
Q.E.D.

Let X (5s) be a gG matrix whose elements are all differen-
tiable with respect to a real parameter s. By virtue of the
above lemma we can then easily obtain d /ds.(detKX (s)): First
construct a matrix M, (s) from K (s) by making a replace-
ment of the elements of the & th row such as K (s),;

—d /ds-K (5),; (j = 1,2,~+,n), compute the determinant of
the resulting matrix, and then sum the result over all k. That
is to say,

2 Getk ()= 3 detMy, (), (2.13)
ds =
where
d
M(k)(s)ij =(1—-0,)K (S)ij + 8, EEK(S)U . (2.14)

Let usnow put K (s) = exp(sM ), where M is a gG matrix
independent of s. Then, M, is obtained by use of Eq. (2.14)
as

M(k)(s)ij =1~ 5ik)K(s)ij + 64 (MK (5)}.'/‘

={Gy,K®};, (2.15)
with

Gioryy=(1 —8,)5; + 6. M, . (2.16)
Here, G, is a gG matrix such that the elements of the k th
row are given by M,; (j = 1,2,--,n), the diagonal elements
are unity, except for the kk element being M, , and all other
elements are zero. Equation (2.2) therefore gives detG,
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=M,,. Then, from Egs. (2.15) and (2.3), we find that
detM ;. (s) = M,, detK (s), which when substituted in Eq.
(2.13) gives

% detK (s) = TrM detX (s). .17
On the other hand, Eq. (2.3), shows that detK (s) may be
treated as if it were a ¢ number. Thus, by integrating Eq.
(2.17) under the condition K (0) = 1 we arrive at detK (s)
= exp(s TrM ), thereby completing the proof of Theorem 2.

Replacing expM by M in Eq. (2.9) withs = 1, we obtain
detM = exp(Tr logM ). This formula is convenient for for-
mal operations, but the meaning of logM is not clear for the
case of general M’s.’

Let us now turn to the questions of under what condi-
tions the inverse M ' of a gG matrix M exists, and of whether
M, if it exists, is uniquely determined. We start our discus-
sion by proving the following:

Lemma 2: For a gG matrix M, there holds the relation

y 9
VoM,

3
- (an, detM )Mjk
— 5, detM. @.18)

Here the operator /dM,; means left differentiation,
and the left derivative d/dM,;-detM is obtained as follows:
Since detM is expressible as a homogeneous polynomial in
the matrix elements, the derivative in question is given as a
sum of the derivatives of the respective monomials. Any of
such monomials contains in it at most one M. If the mono-
mial does not contain M, 4r 118 left derivative is zero, of
course. On the other hand, if it contains one M, ;, we shift the
factor M; to the leftmost position by use of Eq. (2.1), with
M = M, and then drop the M,; to obtain the derivative.
Later we shall also use the right derivative 5/3Mj,- -detM. In
this case the procedure differs from the above one in that the
factor M, if contained in a monomial, is to be shifted to the
rightmost position and then dropped there.

The proof of the above lemma proceeds as follows: We
begin by considering the first part thereof, i.e.,
M;3/3M,;-detM = §,, detM. By use of the relation
M x)YM,, x,)=1,M, X7 J(M;x;), which follows from
Eq. (2.1), we shift the factor (M, x;) contained in the left-
hand side of Eq. (2.2} to the leftmost position and then per-
form the operation d/dM,,. In this way we find that

ad
(aMkj detM)x,xz---x,, =Nk N —1, xj(Mlj,le)

.“(M" =Lk llet I)(Mk +1L ey l'xjk . 1)'"(M"j,,xfn)’ (2'19)

which, when multiplied from the left by M, and summed
over j, results in

ad
(Mi/ M, detM)"lxz"'xn =Nk M — 1.4
X (M )My x; )My 0 X, )
XM, . (WA T ,)"'(M..j,,xj")- (2.20)

If i = k, we shift the factor (M,;x;) on the right-hand side to
the position in between (M, _, , x, )and

detM
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(M, ., X, ) thereby obtaining the left-hand side of Eq.
(2.2), i.e., detM-x x,-x, . On the other hand, if /#k%, the
right-hand side of Eq. (2.20) contains the factor (M;x;)
twice, and hence must vanish owing to (M;x;)* = 0. This
completes the proof of the first part of the lemma.

Next we consider the second part of the lemma, i.e.,
(0/M,-detM )M, = §,, detM. Using Egs. (2.3), (2.4), and
(2.5),, we find that
XXX, -detM = detM-x x,x,

=M, x; )My x, )'"(Mnj,,xj")

= (lejwjll )(szAljzz )(ij/n) (2.21)

On the right-hand side of Eq. (2.21) we shift the factor
(x;M;) to the rightmost position, perform the operation
3/3M;, multiply M, from the right, and sum the resulting
expression over j. Then, by repeating the same arguments as

above we arrive at

(aff detM)Mjk — 5, detM.
Ji

For detM, however, the right and left derivatives with re-
spect to an arbitrary matrix element are equal:
I_ ettt =~ detM.

aj”j.‘ i
To prove this we note that detM is given as a sum of terms
suchas M, M, ,M,,  (0,7€S,) apart from a sign,
where 27 indices o01,71,02,72,---,0n, 71 contain every index
twice. This means that any term thereof commutes with M),
owing to Eq. (2.1),. Thus, if we write a term containing M,
as M, T, then we have M;; T = TM,, which leads to Eq.
(2.23). Combining Eq. (2.22) with (2.23), we find that the
second part of the lemma is true. Q.E.D.

The quantities defined by

a,=-5_

J
now provides us with a gG matrix 4, and Eq. (2.18) can then
be written as A-M = M-4 = detM. This implies that if
(detM ) ! exists, then the inverse matrix M ~' of M is uniquely
given as M ' = (detM )"'A. Conversely, if M ! exists, then
M "M = 1 yields det(M ') detM = 1, thereby implying the
existenceof (detM ) ', Summarizing, we obtain the following:

Theorem 3: The inverse matrix M ! of a gG matrix M
exists if and only if (detM ) exists.

We conclude the present section by making a remark on
more general cases. The above discussion has been confined
to those gG matrices (and determinants) which combine gG
vectors having the same relative signatures 7,,. It is possible,
however, to remove such a restriction and to generalize gG
matrices. Introducing a gG matrix such as

(2.22)

(2.23)

detM, (2.24)

§x = Mxi'xi (l‘vK = 1s21"')n)a (225)
where

Xixj = 17ijxjxi9 §K§p = ”;pgpgxy

x& =X, 7; =M. = —1 (nosummation over
i,x), and

MM, = 000,05 MMM, (2.26)
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we define the corresponding determinant by

&6yl =detM-x x50x,, . .27
In this case detM does not necessarily commute with x;,. On
the basis of such matrices it is possible to introduce Klein

transformations® for gG vectors. The problem will be dis-
cussed elsewhere.

Iil. ANALYTICAL PROPERTIES: DIFFERENTIATION,
INTEGRATION

Regarding a gG vector x = (x,,x,+,x, ) as a kind of
variables, to be referred to hereafter as gG variables, we con-
sider a function f(x). Since (x,)* = 0, f(x) is always express-
ible as a polynomial in x;, where the coefficients may consist
of complex numbers, other gG numbers, matrix elements of
gG matrices, etc.

As for differentiation we employ again left differenti-
ation. The procedure to obtain the left derivative 3/9x;-f (x)
is extremely simple here: For any monomial m(x) contains
x,, at most, once. It then follows that the operators d/dx; are
subject to the commutation relation [d/3x,,3/dx;] _, =0.

For integration we adopt, as usual, the formulas’”’

ijdszi, jdjso (j=12,,n).

These are further generalized to the case of multiple
integrals:

J X XpoX,d "X = (i),

(3.1)

(3.2)
x,x, -x,d"x=0 (0<r<n).
W2 Ir

The linearity relation is also assumed:

f (@ i) + @ ) "x

= alffl(x)d "x + azfﬁ(x)d "X, 3.3)
where a, and a, are quantities independent of x, and f,(x)
and f,(x) are arbitrary functions of x.

1t is to be remarked here that since the notion of “mag-
nitude” cannot be associated with gG variables themselves,
the integration considered above should not be regarded as
an infinite sum of infinitesimal quantities, but rather as a
kind of linear mapping. It is often convenient to write

d"x=dx,dx, _, -dx,. (3.4

When combined with the symbol ,d "x thus means a succes-
sion of mappings such that we perform firstly a mapping
with respect to x,, in a way specified by Eq. (3.1) withj = n,
secondly a similar mapping with respect tox,, _, ,---, and last-
ly a similar mapping with respect to x,. Thus, if the order of
dx,’s is changed in Eq. (3.4), this will necessitate a corre-
sponding change in the order of mappings. The consistency
with the definition of integration then requires that®

). (3.5)

Further, it is also consistent to treat dx,’s as if they were gG
numbers satisfying

dx,dx, = 1;dx;dx,
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dx;x; = n,x,dx; .

(3.6)

More generally, if @ is a gG number such that x,a = nax,,
then we may put

dx,a = nadx, . 3.7

Relations (3.5)—(3.7) will prove useful for practical
purposes.

The & function for a gG variable x; belonging to a gG
vector x = (x,,X,,-X, ) is defined by’

r 1 ’
S(x; —xj)ET(xj —xj), (3.8)
where x; belongs to a gG vector x’ = (x],x;,+,X;) which is
independent of x. From the definition of integration it is easy
to check that for an arbitrary function f(x;), which is always
written in the form a + Bx;, there holds the relation

ff(xj)é(xj —x)dx; = f(x]). 3.9
The & function is also written in the form of a Fourier
integral’

8(x; —x)) = f exp| — (x; — x))x} Jdx; . (3.10)

These are easily generalized to the case of n gG variables.
The definition

80x — x)=8(x, — x})80¢, — x3)-8(x, —x,), (3.11)
immediately leads us to
Jf(x)(S(x —xNd"x = f(x) 3.12)

for an arbitrary function f(x) of a gG vector x. From Eq.
(3.10) its Fourier integral is found to be

—

S(x —x) = J expl — (x —x"x")]d "x", (3.13)

s
where (x-x")=27_ x,x; and d "x=dx dx,-dx,,.
Substituting Eq. (3.13) in (3.12), we find

f&) = f ff(x)exp[ TR d

~
=(- 1)'1[ f F(x)exp(x”x)d "x exp(x’-x")d "x",
(3.14)
where use is made of d "x"d "x = (I, ;7,,)d "xd "x" [cf. Eq.
(3.5) and the footnote®} and I, ;7 = (—1) " . Performing a
change of variables x/— — x/" (j = 1,2,-,n) in Eq. (3.14),
we arrive at what corresponds to Fourier transformations.
Theorem 4: Let f(x") be the Fourier transform of a func-

tion f(x):

Ty = [ f@rexpl - (ood s (3.15)
Then the inverse transformation is given by
s = [ Forexpl - (xad’s (3.16)

It is of interest to note that in contrast with the case of
real variables the above integrals exist for any functions f(x).
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IV. TRANSFORMATIONS OF gG VARIABLES

In the present section we take up the problem of trans-
formations or changes of gG variables. Here we are especial-
ly interested in the question of how the measure d "x is trans-
formed under a change of variables x = (x,,%,,+,x,,)

—x' = (x],x},,X,). Now the new variables x’ can generally
be expressed as a polynomial in x, such as

X, =A, +xA; + 2 X, X% A;

Jujredai 2

(4.1)

r=2
where the coefficients 4,,4;,and 4, ; . ; are gG tensors inde-
pendent of x. As before we are concerned here with such
changes as x—x" with x and x’ being gG vectors sharing a
fixed set of 7,;’s. Let us now denote by A the gG matrix whose
Jielementis givenby 4, i.e., 4 = ||4;]), and assume that 4 -'
exists. According to Theorem 3, thlS assumption means the
existence of (detd )™', the significance of which will be made
clear by Theorem 5 below. For the sake of brevity let us write
the third term in Eq. (4.1) as Q,(x):

Q’(X)E 2 le x/ z'Jlfz Sl (4‘2)
r=2
Thus, Eq. (4.1) is rewritten as
x/ =4+ xA; + Qi(x) .
In this case the following theorem holds:
Theorem 5: The inverse transformation of Eq. (4.1') ex-
ists if and only if 1 *' exists.
Proof: Let us first assume that 4 ! exists. Then, multi-

plying both sides of Eq. (4.1') by (4 "), from the right and
summing the result over 7, we find

xp = (6] — A)A i — QYA e 5 4.3)

which can be solved for x by iteration. After repeating the
iteration, at most, »n times, we can express x as a polynomial
in x'. Clearly, the inverse transformation thus obtained is
unique. This proves the sufficiency part of the condition.
Next we assume that the inverse transformation exists. It can
then be written as

X =Al+x4, +Q'(x), 4.4)

or equivalently
=i[ ” M{_‘lelx“]‘v ” + Qill(xll) s (4‘47)

where x,"=x," — A, and Q,'(x") [Q,"(x")] is a polynomial
inx’ {x") consisting of terms of the second or higher degrees.
Substitutingx’ givenby Eq. (4.1, i.e.,x,” = x, 4, + Q,(x),
in the right-hand side of Eq. (4.4), we obtam anidentity in x
such as

x,=4"+ xk/lkj’iji "+ QX)) 4.5

where Q,”'(x) is a polynomial in x of the same kind as the
Q,’s introduced above. It therefore follows from Eq. (4.5)
that A7 =0, Q,"'(x) =0, and

“.1)

Aghi" =6y (4.6)

which implies that (detd ) = detd ”, namely, that A ! exists
owing to Theorem 3. This proves the necessity part of the
condition given above. Q.E.D.

The reason why we have assumed above the existence of
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A ~'is now clear: By making this assumption we are confining
ourselves to those transformations whose inverses exist. In
this case all gG vectors x = (x,, x,,", X,,),
x'=(x,, x5+, x,,"),« which are connected with each other
by such transformations are placed, so to speak, on an equal
footing. Accordingly, any basic formulas valid for x are re-
quired to be so for any other x’s. For example, Eq. (3.2)
should hold true in the same form but with x; and d "x being
replaced by x,’ and d "x’, respectively. In order to ensure
such invariance of the integral formulas we have to require
the measure d "x to satisfy Eq. (4.7) below.

Theorem 6: The necessary and sufficient condition for
Eq. (3.2) to remain invariant under a change of variables
X = (X, X500, X, )X = (x,',x,",,x,, ") is that

x' = (detJ ) 'd "x , 4.7

where J is the gG matrix whose ji element is given by
d/dx;x, ie,

J=|idx,'/dx;]j . (4.8)

Proof: The proof is performed in essentially the same
way as in the case of G variables.” Thus, we show first that in
the transformation (4.1') the inverse of detJ exists. Taking

the left derivative thereof, we find that J is given in matrix
form as

J=/{(1+/1"

a
‘a_x: 0,(x)

), 4.9)

by virtue of the existence of A ! being assumed. Here every
matrix element 3/dx,;-Q, (x) of ||0/9x;-Q,(x)|| is given as a
polynomial in x consisting of terms of the first or higher
degrees, whence J ' is obtained as

= (1 20/ ) v
dx,
_ < g1 _‘2_ ‘ a1
= 3 (-4 5 0 Ji. @0

which guarantees the existence of /' and hence that of
(detJ Y! owing to Theorem 3.

Next we consider two transformations x;’ = f;(x) and
x," = g;(x), specified by functions fand g. In the following
the former, for example, will be referred to simply as the
transformation /. When the transformation g is applied to x,
i.e., x;" = g;(x), and then followed by the transformation £,
i.e., x;” = f(x"), let us denote the resulting transformation
x.” = fi{glx)j by x.” = (f2),(x) and call it the transforma-
tion fg. In this case it is clear from the definition of left differ-
entiation that

ox,;” ax,' ox,"”

- , (4.11)
Ox, dx;, ox,'
whence
a i" a ’ a .II
det|| & :det~ T e || 4.12)
X, dx, o,

The above result implies that if Theorem 6 is true for the
transformations fand g separately, then it is also true for the
transformation fg. [Notice that (detJ ) 'd "x = d "x(detJ )!
on account of Eq. (2.3) and (3.7)]. Thus, to prove the theo-
rem for a general transformation (4.1’) we can proceed as
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follows: We first express Eq. (4.1') as a succession of some
basic transformations and then prove the theorem for each
of such transformations.

In view of this we consider (n -+1) transformations
Joys Sy Jes Jin 41y such that

ﬁk)x’(x)zxi +6,0:(x) (k=12,-n),

f;n +1) (x)ﬂl +X/l]1 s (413)
where Q, (x) is a polynomial in x consisting of terms of the
second or higher degrees. Let us now focus our attention on

the transformation x," = (£, ;1) fon S —1y 2 Sy )i (X)- A
simple calculation shows that

i =4 +x]/lﬂ +Q(f(1 I fij—z) f(l)(x)) i

where 0, (f;_, S Ly OGN~ 1 =0, (x). It is now evi-
dent that Eq. (4.14) coincides with Eq. (4.1"), provided
Q. (xysin Eq. (4.1") or Q. (x)’s in Eq. (4.13) are chosen to be

0.0 = QS -y Sy ~Fory DA,

Q0:(x) = Qj [(f;fq) f(i~2) "'f(l))Al(-":)](/l ﬁl)ji .
This means that by successively applying the transforma-
tions (4.13) with Q. (x)’s being chosen in an appropriate
manner we can realize an arbitrary transformation.

We now show that our theorem holds true for each of
the transformations (4.13). Let us first consider £, _ ,,. In
this case we have
X)Xy sex, " = (xj,}" 1)(-7“ Aj,z)"‘(x' /1,' )+ Po n (x), (4.16)

where P, (x) stands for a polynomial in x of degree not high-
er than /. Substituting x4, = A,x; in Eq. (4.16) and using

fabeld gy

Egs. (2.2) and (2.5),, we can rewrite Eq. (4.16) as

(4.14)

(4.15)

X%, x," = dethx x,x, + P, _y (X). 4.16)
On the other hand, we obviously have
x;,'x;wx;" =P, (x) (0<r<n). “4.17)

Noticing the fact that det/ = detA for the transformation
fin 41y, we find that the necessary and sufficient condition
concerned is given precisely by Eq. (4.7).

Next we consider the transformation fi, (k = 1,2,--,n).
In this case g, (x) is written as a sum of two terms:

Qk (x) = x; Uy, () + Vi, (x), (4.18)
where U, (x) and ¥, (x) do not contain x, . Noticing the
fact that U, (x) commutes with any x; because of
0 (X)X, = N, X, 0, (x), we find from Eq (4.13), that
XXy = (1+ U(k)(x))xlxz

+ X XXy V(k)(x)xk +1 Xk 420X

.. (4.19)

Here the polynomial ¥, (x) does not contain terms of the
zeroth and first degrees and moreover does not contain x, .
Hence, the second term on the right-hand side of Eq. (4.19)
must vanish [in fact, such terms can be nonvanishing only
when V,,,(x) is of the form a + Bx, |. Further the term con-
taining U, (x) in the above vanishes as well, but is retained
there for later convenience. At any rate, Eq. (4.19) is rewrit-
ten in the form

XXy =+ U(k)(x))x1x2 (4.19)
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As for x; 'x; '-x; '(0<r < n) we may divide the possibilities
in the following way: case (i) in which the monomial con-
tains x, ; case (i) in which the monomial does not contain x; .
In case (i) let us put j, = k for simplicity. The following re-
sults are then obtained:

(1 + U, G)x;, x;, %, + Vpoy (0%, %, %,

for case (i),

X5, X5, K,

(jI :#ky }= 1,2,'",”(”),

for case (ii), (4.20)

where it is to be noticed that the right-hand sides, except for
the first term of case (i), do not contain x, .

On the other hand, it is easy to see that for the transfor-
mation fi,, (k = 1,2,...,n)

det] = 1 + Uy, (x). 4.21)

From Egs. (4.19"), (4.20), and (4.21) we thus find that the
necessary and sufficient condition concerned is given again
by Eq. (4.7) for the present case. Q.E.D.

V. APPLICATIONS TO FERMI SYSTEMS: COHERENT
STATES, gG REPRESENTATION

In the present section we shall generalize the state-vec-
tor space 57 for a system described by Fermi operators q;
and a! (i = 1,2,...,n) to 75 by introducing gG numbers.
Here the Fermi operatorsa, and a] are assumed to satisfy the
commutation relations (1.1) with an arbitrary set of 7, ’s.
Our generalization consists in employing, together with
complex numbers, gG numbers or more generally gG ten-
sors like elements of gG matrices as coefficients of basis vec-
tors g} af -a} |0) (» = 0,1,---,n) which span the state-vector
space. Since gG numbers do not form a field, the resulting
space 5 ; is neither a linear nor a Hilbert space in the usual
sense of the word. The dual space #™* of 77 is also genea-
lized to &, * in such a way that gG as well as complex
numbers are allowed to be coefficients of basis vectors
(Olg;a; --a;.

For definiteness let us further introduce the following
assumptions: Firstly, as far as the commutation relations
with gG numbers or tensors are concerned, the operators a;
and a! behave in the same way as gG numbers x,. Thus, for
example,

= 7]., § a;,

4 Tk =y My ik, Wiy TR0 4o G.D
where d, stands for a; or af, and T%/;; _ for a gG tensor.
Secondly, the vacuum state |0) has commutation properties
such as

xi|0) = |0>xi’

Ti. 10y = [0 T

(5.2)
(Olx; =x,40], (O|T%%,.. = T4l O
Lastly, in view of the fact that the right-hand sides of Egs.
(3.1)and (3.2) are ¢ numbers, we must require in accordance
with Eqgs. (5.1) and (5.2) that
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didxj = "deidi ’
(5.3)
dx;|0) = |0)dx,, (O|dx, = dx,{0].

On the basis of Eqgs. (1.1), (5.1), and (5.2) we can now
compute inner products between state vectors of #°; and
those of %7 *. For example, the inner product of
(0la, e * and M;,.a}|0)e; is found to be 7,7,,8, M.,
which is not a c number. In fact, state vectors of #° are not,
in general, those susceptible of the usual probability inter-
pretation. In this sense they are not directly connected with
observational facts. As will be seen below, however, it is pos-
sible to arrive at physical results through the intermediary of
such formal objects.

Let us now introduce the state vectors |x) and (x|
which will play an important role in the following
discussion:®

Ix)=exp(a’x)|0), {(x|=(0|6(x — a), (5.9
where (a'-x)=2"_ a/x;, and
8(x — a)=6(x, — a)b(x, — a,)d(x, — a,),
5.5
8(x; —a;)= —-1— x;, —a).

I
In this respect we notice that the following relations hold:

exp( — alx;)a; exp(alx;) = a; + 8;x; ,
8(x;, —a;)a, = 8(x; —a;)x;, (no summation over ).
(5.6)

With the help of Eq. (5.6) we can show that |x) and (x| are
the eigenstates, or coherent states, of a; with eigenvalue x;
being a gG number:

a;|x) =x;|x},
5.7
(xla, = (x|x; .

This corresponds to the situation for the case of Bose opera-
tors that the annihilation operators have eigenstates, called
coherent states, where their eigenvalues are regarded as the
classical counterparts of the operators. It is worth noticing,
in the present case, that not only ket but also bra vectors can
be eigenstates of a;’s. This is due to the fact that g,’s are
bounded operators, contrary to the case of Bose operators.

One of the most characteristic features of the above co-
herent states is stated as the following:

Theorem T: The coherent states for the operators a; sat-
isfy the orthocompleteness relation:*®

(x|x') = 6(x — x"),

(5.8)
fhﬂﬂd%:L
Proof: The first equation follows directly from Egs.

(5.4) and (5.7). The proof of the second equation proceeds as
follows: For the state vectors |k ) (k = 0,1,---,n) defined by

|k Y=a}a} | -ala'|0), (5.9)
there holds the relation
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fexp(a{xk)lk —1)(k —1|8(x, — ay)dx,
=(—of(1 +alx)lk — 1)k —1|(x, —a,) dx,

=(—i)[f |k —1)(k — 1] x, dx,

+J-a£ik——1)(k——1\akxk dxk]

=k =1k~ 1] + |k )<k, (5.10)
where use is made of Eq. (3.1) and a} x, |k —1) (k —1|
=a} |k —1)(k —1| x,, which follows from Egs. (5.1) and
(5.2). By mathematical induction Eq. (5.10) leads us eventu-
ally to

[wan=3
all possible
states

lk)(k|=1 (5.11)
Q.E.D.
Next let us construct eigenstates of the operators a;. To
distinguish them from the eigenstates of a;’s we shall use, as
eigenvalues, gG vectors with asterisk such as
x* = (x¥, x¥,.-, x*). For the state vectors defined by
|x*)=b(a* — x*)|0),
(5.12)
{x*|=(0]exp(x*-a),
where

b(a" — x*)=6(a} — x,%8(a} _, — x,_,*)b@] —x,*),

(5.13)
we can prove in a similar manner that
allx*) = x]|x*),
(5.14)
(x*|a] = (x*|x; .
Further, what corresponds to Theorem 7 is now stated as
follows:
Theorem 7': The coherent states for the operators a/
satisfy the orthocompleteness relation:
(x*|x*') = 8(x* — x*),
(5.8")

Jd"x*(x*)(x*l =1,

where d "x*=dx *dx,*---dx,,*.

The operation of attaching an * or * operation which
appears above may be regarded as a generalization of Hermi-
tian conjugation. Thus, we may assume rules such that
(ax; + Bx;)* = x;*a* + x;*B *(xa)* = aj*xi*’

(dx; dx;)* = dx;*dx;*, (|0))* = (0[,( )** =( ), and in
particular 3
(6(x — x")* = 6(x"* — x¥),

ij dxj)* = dej*xj* = — ij* dx;* .

Incidentally, the reason why ““/”’ was introduced in Eq. (3.1),
is now clear: The integral formulas have been so defined as to
remain invariant under * operation. It is also easy to check
that in each of the following pairs the two members connect-
ed by ~ are the adjoint of each other: (5.4), ~(5.12),;

(5.15)
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(5.4);~(5.12);; (5.7), ~(5.14)5; (5.7), ~(5.14) ;
(5.8),~(5.8); (5.8),~ (5.8,

In view of this let us agree in general that given a gG
vector x = (x,,x,,,X, ) another gG vector

= (x,*,x,%,,x,*) can always be so chosen as to be in a

one-to-one correspondence'' with x. Our formalism as a
whole will then be invariant under * operation. Whether
such x and x* are connected by a transformation such as Eq.
(4.1), they will be regarded hereafter as independent quanti-
ties. This is in accord with the fact that the corresponding
operators @, and a}, which are related through Hermitian
conjugation, are independent of each other.

When the products are formed between Egs. (5.8), and
(5.8"),, the completeness relation is expressed in different
forms:

JJ |x*){x|exp(x*-x) d"x*d"x = 1,
(5.16)

J- J ) {x*|exp(x-x*) d "xd "x* = 1,

where (x*.x) = 27_ | x,*x,, and use is made of the relations

(x*|x) = exp(x*-x),
A7
(x|x*) = exp(x-x*).

On the basis of the above results the theory of Fermi opera-
tors given in 5% can be transcribed in the language of #°; or
of the gG representation. By using the coherent states we
define, for a given state vector |} in ¥, the gG representative
or gG wavefunction by

48 (5.18)
and its adjoint by
Yo)={|x). (5.19)

In particular, the vacuum state |0) or (0] is represented by

Yo(x*) = ho(x) = 1. (5.20)
From the completeness relation it is then clear that the de-
scription by gG wavefunctions is equivalent with the one by
state vectors |): For example, the use of Eqgs. (5.16), and
(5.18) gives us immediately

[y = J J [X)i(x*) exp(eex*)d "xd "x*.

Let ¢,(x*) and ¥,(x) be the gG wavefunctions for |1) and
|2), respectively. Then, by sandwiching both sides of Eq.
(5.16), with (2| and |1) we obtain

Q2N = f J D000 (x*) exp(x-x*)d "xd "x*.  (5.22)

This also shows that the normalization condition for ¥(x*) is
given by

f f Y)P(x*) exp(x-x*)d "xd "x* = 1.

As for observables F (a T,a) in general, which we assume

(5.21)

(5.23)
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for simplicity to be normal-ordered, we can show similarly
that there exists the following one-to-one correspondence
with F(x* x):

(x*|F(a’,a)|x) = F(x*x) exp(x*-x),

F(a'a) = f J. [XYF (x"*x) (x*|

Xexp[(x"x"*) + (x"*x) + (x-x*)]

Xd"x'd"x"*d "xd "x*. (5.24)
Further, the matrix element {(2|F(a ",a)|1) is expressed in
terms only of gG quantities as

QIF@a)|1) = j f Fole )V (& * X (%)

X exp[(x'x'*) + (x'*.x) + (x-x*)]

X d "x'd "x'"*d "xd "x*. (5.25)

The Schrodinger equation with the normal-ordered Hamil-
tonian H (a !,a) then takes the form:

Wf(x*) f J H (x* % )(x'*) expl(e*-x') + (x'x'*)]
xd"x'd"x'*. (5.26)

We have thus found that the system under consider-
ation can be completely described in terms of gG quantities,
L.e., in the gG representation. As in our previous paper’ the
path-integral method can be easily formulated in this repre-
sentation. In the paper that immediately follows'? it will be
shown that when suitably modified, most of the above results
also apply to para-Fermi systems.

'See, for example, F.A. Berezin, The Method of Second Quantization (Aca-
demic, New York, 1966); Theor. Math. Phys. 6, 194 (1971); F.A. Berezin
and M.S. Marinov, Ann. Phys. (N.Y.) 104, 336 (1977).

*See, for example, H. Umezawa, J. Podolanski and S. Oneda, Proc. Phys.
Soc. London Sect. A 68, 503 (1955).

*For the special case of G algebras our definitions are slightly different from
those employed by other authors. For example, our determinants for this
case correspond to the inverses of those used by R. Arnowitt, P. Nath, and
B. Zumino, Phys. Lett. B 56, 81 (1975). Compare Theorem 2 below.

*Throughout the present paper the /th equation in Eq. (2.5), for example,
will be quoted as Eq. (2.5);.

SFor this reason it does not seem appropriate to define det M in general by
exp(Tr logM ) as, for example, in Ref. 3. On the contrary, our definition
(2.2) always provides us, for any given M, with detM as a homogeneous
polynomial in M’s.

°Q. Klein, J. Phys. (U.S.S.R.) 9, 1 (1938); G. Liiders, Z. Naturforsch. 139,
254 (1958).

’Y. Ohnuki and T. Kashiwa, Prog. Theor. Phys. 60, 548 (1978).

*For the case of multiple integrals such as §j--.d "xd "x', Eq. (3.5) must be
generalized to dx,dx;’ = 7,dx,'dx, for all, j.

“Most of the formulas given in this section are straightforward generaliza-
tions of those given previously for the case of ordinary Fermi systems.”
“Here, by orthogonality we do not mean that the inner product vanishes for

x#x', but only that it becomes a § function.

""When two complex numbers c and ¢’ are given, it is possible to decide, by
comparing their real and imaginary parts, whether they are complex con-
jugates of each other. For the case of gG vectors, on the contrary, we have

no corresponding way of deciding whether given x and x' are the adjoint of
each other. In this sense, * operation is a very formal one. Indeed, whether
x ts the adjoint of x’ or not is merely a matter of definition.

12y Ohnuki and S. Kamefuchi, J. Math. Phys. 21, 609 (1980).
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Grassmann algebras of the usual kind are generalized to what are to be called para-Grassmann
algebras. Para-Grassmann numbers are defined as those satisfying the trilinear commutation
relations that resemble the para-Fermi commutation relations. Basic mathematical properties of
these algebras are studied in detail on the basis of generalized Grassmann algebras discussed in the
preceding paper. Applications are made to description of para-Fermi systems, and it is found that
such systems can completely be described in what we call the para-Grassmann representation.

I. INTRODUCTION

Just as Fermi operators are generalized to para-Fermi
operators,’ a Grassmann algebra of the usual kind? is gener-
alized to what is to be called a para-Grassmann algebra.” The
purpose of the present paper is to discuss some of the basic
properties of such algebras and to apply the results to de-
scription of para-Fermi systems. In what follws the adjec-
tives “para-Fermi” and “para-Grassmann” will be abbrevi-
ated to “pF” and “pG,” respectively.

A set of independent numbers &, &,,--+, £, are called pG
numbers to form a pG algebra of order p( = 1,2,...), when
they satisfy the following relations:

[£:[6,,6:]1]=0,

[£:..€.& ] =0, only for m>p +1, (1.H
where [4, B,--,Z ], denotes the completely symmetrized
productof AB---Z, and i’s, j, k = 1,2,--,n. Forthecasesp = 1
and p = 2, Egs. (1.1) are simplified, respectively, to

[6.6,]. =0, forp=1,

<§i!§js§k>+ =0, for p=2, (1.2)
where (4, B,C) , = ABC + CBA. Thus, the case p = 1
corresponds to a Grassmann algebra of the usual kind.

It is often convenient to use what we may call the Green
representation:'

£ = ﬁ;@, (1.3)
with “‘

[£& P, =0,

[£@£D]_ =0 @#8). (1.4)

Let us call £ {* the Green component of £, with Green index
a. For the present algebra there may exist some other types
of representations. Throughout the present paper, however,
we shall exclusively be concerned, for a physical reason, with
the one represented by Egs. (1.3) and (1.4).

In the preceding paper* we have made a detailed study
on generalized Grassmann (“gG”’) numbers x;. They also
correspond to a kind of generalization of ordinary Grass-
mann (“G”’) numbers. As shown there, we may regard G
and gG numbers as the classical counterparts of Fermi oper-
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ators satisfying the commutation relations, respectively, of
the normal case and of a general, normal or anomalous,
case.’ Since the algebra of £ (s is a special case of gG alge-
bras x;, the following discussion will heavily lean on the re-
sults of (I).

More precisely speaking, the correspondence
£ ®e—sx, between £ (s and x,’s of (1) is given as follows: A
pair of suffixes (/,@) of £ ¢’ is taken to correspond to the
subscript 7 of x;, and the relative signatures 7 introduced
through & (96 P=n,;, ., 5,£ € @ are such that
-, fora= pB, 15
4+, for a#pB.
Alternatively, it is also possible to identify the suffixes a and
i of £, respectively, with the subscript / and the label by
which to distinguish »n gG vectors x, x’,-x'” . In the follow-
ing we shall make use of both kinds of correspondence.

For the pG numbers or variables £, (j = 1,2,--,n) it is
possible to define “analytical” operations such as differenti-
ation and integration. In addition to these numbers we may
consider a finite number of *“‘constants” i, (s = 1,2,...) which
also are pG numbers of order p but not subject to the above-
mentioned operations for &,’s. The Green components z!“
for which u, = X7 _ ' satisfy the following relations:

S = g, =0, (1.6)

N8y = Nap =

In connection with the Green representation let us also
remark the following: When working with a pG algebra we
should be interested only in those functions in §,’s and s
which do not explicitly depend on Green indices: For one
thing the Green components are merely mathematical auxil-
iaries, and for another only those quantities of the above-
mentioned kind are defined, in our physical applications, to
be of physical meaning.

The present paper is arranged as follows: In Sec. I ana-
lytical operations such as differentiation and integration are
introduced. Some basic formulas for these operations are
summarized as two lemmas. Further mathematical proper-
ties are discussed in Sec. II1. A general theorem is proved
concerning a change of variables in integrals, and the delta
functions and Fourier transformation are defined. Section
IV deals with applications to pF systems. Coherent states for
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pF operators @, and a] (i = 1,2,---,n) are explicitly construct-
ed, and what we call the pG representation is defined on the
basts of such states. It is shown that pF systems can be de-
scribed completely in this representation.

1. ANALYTICAL OPERATIONS
A. Differentiation

Asin (I) we shall be concerned mostly with left differen-
tiation. We define left differentiation with respect to §; by the
sum of left differentiations @ /9&  with respect to the Green
components £ (*:

I _ & 9

Here, as for the operation d/9¢ {*, we adopt the same defini-
tion as the one given in (I) (cf. Sec. III thereof). The defini-
tion also requires that

d J . d d

g o\ o P o
Right differentiation 5/8§ is similarly defined in terms of
the Green components /3¢ .

Let us consider a functlonf(gl, Err &) OfE L Egyeens £
and differentiate it with respect to a specific variable §;. The
function f may also contain other pG numbers . For the
sake of convenience we hereafter denote the &, under consid-
eration by £ and all other pG numbersby {,, p,,... Thus, we
writef(£,8,.8, . Pss Py, )=f(£). Atthis point we notice
that the so-called decomposition theorem,® proved original-
ly for pF operators, is applicable as well to the present case
owing to the similarity between Egs. (1.1) and the pF com-
mutation relations'-®”: Actually, the situation is much
simpler here because the right-hand side of Egs. (1.1) vanish-
es, so that no contracted terms are needed. Thus, adapting
the theorem to the present case, we obtain the following:

Theorem 1: An arbitrary function of £ and other pG
number can be expressed as a linear combination of terms of
the standard form, i.e.,

(6,616,521 [6:6, 1666, P prss 2 L4t
X[, 10, 10,1 @+r<pr+s<p, @23)

.2)

where the subscript attached to the bracket [ , ,--], de-
notes the number of pG numbers contained therein, and

[ , I's represent commutators of pG numbers other than £.

It is to be emphasized here that the theorem is a conse-
quence only of Egs. (1.1). The factors [ , ][ , 1-+[ , Jare
quite independetn of £ and commute with £ and d /9. They
may therefore be omitted often in the following discussion.

We now show that the result of differentiating an arbi-

traryfunctionf (£ ),i.e.,d /3&- f (& ), canbeexpressedagain ai

1

a function only of £, {’s, and p’s, namely, in a form which
does not explicitly depend on Green indices. To this end we
note, first of all, that

I ec18@)) = 16 10) + 1661 8L
9% 9% R

§§§] 2,

which follow directly from the definition. Thanks to Egs.
(2.4) and (2.3) it suffices to show that

3 /OE€,£, &, pr1s Parres Ps ] 4+ 5 18 2 function only of pG
numbers. In so doing we make use of the following relations:

é's““” —=1¢ + p))}
= 2w {Ee” + p7pe)}
_ 9g()
- ;[&zﬂg@)‘*‘nfw(ﬁ(ﬁ)*‘ p(ﬁ)) é_(a)}
=8¢)+ 2(1 —28,5)EP + p?) Zg;i))
=8+ €+ P T A EW+ P,

2.5)
Firstly, summing Eq. (2.5) over , and secondly, multiplying
Eq. (2.5) from the left by (£'® + p'®) and then summing
the resulting equation over @, we obtain

e+ RO} = )+ €+ ) E 0e©)
(2.6)

and

D{¢ + p@©)} =&+ p)g&) + €+ p)DgE), 27

respectively, where D =2 _(£ @ + p'®).9/9¢ ‘. When

g(&) = (£ + p) ! issubstituted in Eq. (2.7), it is found that

Dg(£) = (r —1)(¢ + p) . Substitution of the last expres-
sion in Eq. (2.6) then provides

—(§+ py=(p+2-29 &+ py~!

o9&
SR G [ 2.8
+E+ p) 2% , (2.8)
whence
—a"g@+ Py =rp+1—NE+pr. @9

Making a change r — r -+ s and noticing the relation

E+ p)Y =&+ phE+ phrE+ Pl k/k! , Were-
write Eq. (2.9) as

O 1E+ Pl + Pt Py, = CEIPHI=T=9) (e g )+ P s

(r+9)t o€

(r+s-—N
Picking out of both sides the terms containing s p’s, we obtain

("-+l-s)! (HsLs) ;5 [55,',5 PPy ,p]

+.r+s
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_ s ptl—r=s (r+s—1
a (r +s—1)

(2.10)
) [§,§,"‘,§a P> Py"‘,P ] ) s
s r—1 $ +,r+s—1
(2.11)
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ie.,
d

aé_ §1§);")§y P;P;"'yp ot

=r("+s)(P +1 —r—s) g,é:’_“]',g, P’P;'",P .

(2.11)

o+ s—1

Puttingp = p, +p, + = + p, onbothsides of Eq. (2.11") and picking out the terms containing eachp; (i = 1,2,--.,5) linearly,
we obtain the differential formula for [£,-,&, py,- ;] . 4 - This and Eq. (2.4) may be summarized as the following:
Lemma 1: The differential formulas for terms of the standard form (2.3) are given as

—a—{[§,§]g(§)}=2§g(§)+[§,§]—‘-9@,

23 %

(2.12)

%[é" §9"', §»P1’P2s“"ps]+,r+s = "("‘f's)(P +1— r—S) [§» §,"') §,P1,pz,"',ps]+‘,+s,,1 .

We have thus proved that the left derivative d/9¢- £ (£)
of an arbitrary function f (£ ) is again a function of pG num-
bers. It is obvious that the same is also true of right
differentiation.

B. integration

Evidently, integration of £ (£, &,,-, &, ) with respect to
the variables of £, &,,--+, £, is to be defined as a successive
integration of /' with respect to the individual variables &;
performed in a fixed order. Therefore, we have only to define
the integration of fwith respect to a single variable. Again let
us denote such a specific variable by &, other pG variables by
¢ ’sorp’s, and a general function of these variables by f (£ ). In
accordance with Eq. (1.3.2) we now adopt the following for-
mulas expressed in terms of the Green components:

Jevergmar=ar,
(2.13)
Jg @) @£ @ dre =0 (0<r< p),
with
dpg zdg_“’dg (2)--~d§(”) , (2.14)
where d& @ dé P = dE PdE @ (a# B) is assumed. Fur-
ther, if d¢ is defined as dé =37 _ ,dE , thend #£

a =1

= (d&)?/ p!. Similarly, we can rewrite Egs. (2.13) in the
|

[16601660 166, EE£pupsp] s d%
(=) 2P (e 4 )

Yorm
jg”d%:p! @,
2.13)
fé"d”g———O O<r < p).

Noticing that right differentiation of pth order with re-
spect to £ can be written as

ar 3°

gE® =P a§<l>a§<2>.--a§“’>’ .15
we can easily realize that
PP gp
dre="1 : 2.16
[reraz S © @.16)

Since, as already noticed above, the right-hand side is ex-
pressible in a form which does not explicitly depend on
Green indices, we can thereby conclude that the result of
integrating an arbitrary function f (), i.e., f f(§)d ¢ is
again a function only of § and other pG numbers. Needless to
say, f (£ ) here may also contain pG numbers 4, ’s other than
§i’s.

More explicitly we can prove the following:

Lemma 2: The integral formula for terms of the stan-
dard form (2.3) is given as

= SZ [P1:§rn][Pz’grzl'“[Ps’grs]

[(p—r—9oN°
X [gr(x+l) ’;r(,rfl) ,'",Q(,,_,) ] +.p—r—s

The lemma is proved as follows: Taking an arbitrary complex number ¢, we consider

([§,§ ] + c§ ) P [ ﬁ" §(a)(2§ (a) + c)] P _ p!é-(l)é—(l),_,g(p)(zé-(l) + c)(2§“2) + C)---(Zg(") + c) .

a=1
Picking out of both sides the terms containing ¢’, we obtain
P' —rgr —r p!
B 1 L
(p—niA 54 £7=(-2 (p—n
which yields, on account of Eq. (2.13),,

pPrfrgpE p—rip r
I

(r+s<p). (2.17)

(2.18)
§rEmEDgn, 2.18)
(888 povs (2.19)

Putting £ =&, + &, + -+ + ¢ ,_, in Eq. (2.19) and picking out the terms containing each §; (f = 1,2,..., p — r) linearly, we

obtain

f (EEEET 6L, €7 dmE = (—2) »—rip— "

(p—n!
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[§]’§2’".’§p —r ] +

(2.19)
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Next let us consider the integral

f[§:§|][§’§z][§,§p r](§_+_ p)r—+-sdP§

— o LG8, M+ pé b+ o], %

(+)'

e LD I Cr ey

4art s

s, (2.20)

where, in the last step, use is made of Eq. (2.13). We then perform a change of variable £ — £ — p here. In this case Theorem 6
of (I) assures us that Eq. (2.20) remains true even when £ is replaced by £ — p in the first line thereof. Thus, we have the

third line of Eq. (2.20)

= J‘([g’é_l] - [P’gll)([;gz] — [P»gzl)"'([§’§p—r] -

(_1)8

= —__T__ 2 [p!gr! ][p’§r2]'"[p'§rs] /[‘[5’;7'(5+l) ][§’§T(X'+2) ]"'[gyér(p o) ]éﬁrr#sd pg'

(p—r—2s)s! £

(o6, D& d%

(2.20))

The integral in the last line of Eq. (2.20") can be computed by use of Eq. (2.19") with r being replaced by » + s. Then, Egs.

(2.20') leads us to

[1eeniesrtes, 1666 p.000)]
(=1 r—r2r-

dré

+ 48

TR (r 4 5)!

= Z [pl1lpEn ]

[((p—r—s)1° =

Putting herep = p, + p, + -+ 4+ p, and picking out the
terms containing each p; ({ = 1,2,---,5) linearly, we arrive at
Eq. (2.17).

It is to be remarked incidentally that when the inte-
grand consists only of brackets of the type [£,£; ], the neces-
sary integral formula is obtained, as a special case, from Eq.
(2.17) with r = s = 0, which agrees with Eq. (2.19") with
r = 0. The repeated use of Eq. (2.17) thus enables us to carry
out any multiple integrals with respect to £, £,,-, &,,. In
what foliows we shall denote the measure of such integrals
by

(@), =d",d"%,

wdPE, . (2.22)

l. FURTHER MATHEMATICAL PROPERTIES
A. Change of variables in integrals

Let us now cousider transformations or changes of var-
iables in pG integrals such as

& —Ei=81En), (ERY
where {and u stand for §; (j = 1,2,--,n)and p, (s = 1,2,...),
respectively. Here we limit ourselves to transformations
such that the new variables £ ; become again pG numbers of
the same order p. By virtue of Theorem 1 we then find that
the right-hand side of Eq. (3.1) should consist of terms of the
standard form such as [ p,, o] [ o3, pal[ o, 1 P, 16,
where p’s and { stand for §,’s or . ’s. Thus, Eq. (3.1) can be
written explicitly as

§i=u + a/jg' + Lbyjes [é’j’,u;' ]ﬂ.:f' + Q). 3.1
Here g;;’s and b, ... ’s are polynomials in [u,u']’s and hence
commute with any other quantities, Q. (£ )’s are polynomials
in & ’s and p,’s, without constant and linear terms in §’s,
and the summation convention over repeated indices is im-
plied. In terms of the Green components Eq. (3.1) reads
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[p’grs][é-r(.v+l) ’§r(,v+2) a"',é'T(,, ,,)] Pt (221)

f

E0=p® +EPNa,00p + bijeondPpi) + Q1E) .
(3.1

Under the change of variables (3.1) the measure (d¢),
undergoes the change dictated by Theorem 6 of (I). In the
present case the matrix J is such that its (j B) ({a) element is
given by 9/9¢ (& 0 J =|(|d/9¢ -& || . Considering
the fact that as far as its dependence on a specific variable,
say £/, is concerned, Q {(£) has a form similar to that of
the second term in Eq. (3.1"), we obtain the matrix elements
as follows

aé— (a)
o a, 50 +b1 o \(B) (a) Q(a) 5)
P JraB sttt §<m C
=A,6,5 + B £ VLV, 3.2)
where 4,;>sand B, . ’s are polynomlals in[§,¢Ts.

Let KJ =32 k" (j=12,~,n) be aset of pG num-
bers of order p. Then the determinant is found from Eq.
(I1.2.2) as

ﬁ (a§ ;(“) K(a)) ﬁ (a§ ;'(U) k_@a))..‘ ﬁ (ag ;(‘7) K(.ll))
g \JESP ") AN 3% ! Py 3——§f{3) i
(O 19 . - -
:det(agg.M)'(aﬁlK‘ )(rlﬁlkz )...(Qﬁlx,, ) (3.3)

Here each factor on the left-hand side can be computed by
use of Eq. (3.2) as follows:

‘9 ()
f[( gl f(l)) ﬁ (AUKSIJ')_*_B
P g(ﬁ)
fI(AI/K(/j)+2 Q]85

= 'T(Aijki + B
D!

eGP STR)
N IO )

ColgemiDr. 34

ij,5's"
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We have thus found that Eqgs. (3.4) and hence the left-
hand side of Eq. (3.3) are expressed in terms only of pG
numbers. The determinant is then obtained from Eq. (3.3)
with the help of Egs. (2.13) and (2.22):

& @
det(a?' = ))

Xl

f f[left hand side of Egs. (3.4)] (dk), .
(3.5)

Thus, according to Lemma 2, this determinant also is ex-
pressible in terms only of pG numbers. To indicate this prop-
erty explicitly let us write the determinant asdetJ =J (£ ',£ ).
Then, from Eqs. (1.2.3) and (1.4.12) we obtain

[VE€.6)61=0
(3.6)

JE"E)=JE"ENIE"E).

Further, as can be seen from the first half of the proof of
Theorem 6 of (I) and from Theorem 5 of (I), J (& *,£ )" exists if
and only if the inverse transformation exists for Eq. (3.1). On
the other hand, we can show by observing Eqs. (3.2) and by
arguing in the same way as in the derivation of Eq. (1.4.10)
that the existence of J (£ ', )™! is guaranteed by that of

[det (a;,6,,)] ' = [det(a,,)] % ie., of [det(a;;)] .

On the basis of Theorem 6 of (I) we can summarize the
above results as follows:

Theorem 2: For a transformation of pG variables (3.1)
or (3.1,

(i) the determinant J (£ ', )=det||d/d¢ (#-& (| is ex-
pressible in terms only of pG numbers, and commutes with
any other quantities;

(i) J (£ ',€ ) ' and the inverse transformation of Eq. (3.1)
exist if and only if [det (a,,)] ~' exists;

(1ii) under the condition of (ii) the measure (d¢ ), in pG
integrals is subject to the change

@€, =J(E"£)'(dE), .

B. Delta functions and Fourier transformation

3.7

The & functions and Fourier transformation can be in-
troduced in the same way as in (I). By suitably modifying
Egs. (1.3.11) and (1.3.8) we define the § function for a single
variable £ ; by

5(§j _§;)E

—§)7.

. . (3.8)
It is easy to check that this function has the expected

property
j FEErrk ) 8E, — E7) dPE,

= f(gl’§27""§;""1§n) . 3.9

From Eq. (1.3.13) the Fourier integral of this function is
obtained as

6, — 6= [epl (& g7 enlae,

1 () I(a)
-patll (é‘j - )

(3.10)
where (£ ;-6 )=2, _ 6 = 1[£,£5].
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The operation of Fourier transformation can be per-
formed on the basis of Theorem 4 of (I). Thus, for a function
fof n pG variables we obtain the following formulas:

f(gl’§2""’§n)

= [-[Ferstognent - @eor @,
(3.11)
J;(é"l"f 2*’!§ :()

= [+[r@gamgewt —E 1@,

where £ #’s are another set of pG variables,
EE*)=2/_,(:€"), and (d5*),=d g ¥d E3-d 76 . It
is to be noticed that for any function fits Fourier transform
exists and is uniquely determined. For the § function of n
variables defined by

8"€ —£)=b(¢ —£1)8E.—£5)086, —£1), (31D

the Fourier decomposition is obtained from Eq. (3.10) as

se—¢)= [«[ewl~ ez enlwen, .
(3.13)

The pG variables ¢ * (i = 1,2,--,n) have been intro-
duced above as those independent of the £,’s. In the follow-
ing, however, we shall assume that £,’s and £ *’s always ap-
pear in pairs, and regard the latter as the * conjugates of the
former and vice versa. As explained in Sec. V of (I), the *
operation plays the role that corresponds to a generalization
of Hermitian conjugation in the usual theories.

IV. APPLICATIONS TO pF SYSTEMS
A. Coherent states

The physical object to be discussed in the present sec-
tion is a pF system,’ i.e., one described by a set of pF opera-
tors d; (/ = 1,2,--,n) of order p, where 4, stands for @, or a].
With each a,(a]) we shall associate a pG number &, (£ ¥) of
the same order and examine the possibility of describing the
system in terms of such § s, where § standsfor &, or & *. The
method we shall adopt for this purpose is essentially the
same as that of describing ordinary Fermi operators in terms
of G or gG numbers. In fact, we shall closely follow the
procedure given in Sec. V of (I).

We begin by assuming that the Green components of G,
and £ satisfy

[@2g®] ., =0, @.1)

where { stands for an arbitrary é , or gt .. Thus, the following
trilinear commutation relations hold:

[a,la,;¢ 11=26(,05, [6,15"4,]1=0
K.[4.4,]1=0, [4,[£5'11=0

where §(7, /) equals §,; for 4, = a;,d, =aj ord, = a},d,

= a; and vanishes otherwrse The mtroductlon of pG num-
bers into the framework of our theory naturally necessitates
a corresponding generalization of the state-vector space

A (#). Usually, .o/ (#) is spanned by state vectors such as
MG, ;.. )|0) (#(@2,67,..)|0)), where .# denotes a
monomlal in the operators concerned. In the present case,
however, we have to allow such .#’s to contain as well £,’s

4.2)
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and p,’s (£ s and u{#”’s). Let us denote hereafter the space
thus enlarged by & 5 (% ). At the same time the dual space
F¥(A*) of (%) has to be enlarged to /% (HE)ina
similar manner. Corresponding to Egs. (1.5.2), and (1.5.2),
we further assume for £ ’s that

é—((z)\()) — \O)é»(a) , (0‘;&1) — g-(m«)l , (4’3)
or equivalently
¢10) =10)¢, (0|&=¢<0|. (4.3)

Sincea,{ |0) = a,]|0)¢ = Oowingto (4.3"),, we find that
«  is spanned by ket vectors such as .#(a},a’, & ,-)|0) *
Similarly, &% is spanned by bra vectors such as
(0].#(a;,a;,Gy,...). The use of Egs. (4.2) and (4.3") enables
us to compute inner products of state vectors of ./, and
those of ./, the result being functions of { ’s. For example,
the inner product of {(0|[{,q,] and [ ',a’]|0) is computed
as follows:

©][¢a; 1145 1|0) = O] [[$a: 1[5 .45 1110)
= (0| [¢.[a.[¢ "4} 11110}

= (0] [, —26,,6'1|0) =26,,[5 .5 ).

On the other hand, the space # ;(# %) is spanned, of
course, by ket (bra) vectors such as
MA@ G LD, H10) (0] (@66 ,.L)), and
their inner products are obtained as functions of £ ’s (£ s).
Following the procedure given in Sec. V of (I), we now
construct eigenstates or coherent states for the operators a;
in.& 5 or .&/% . The state vectors corresponding to Eq. (1.5.4)
are written as

), )==exp(a"£){0],
(©),|=(018"¢ —a),

where
@ €)=Y @€)=17 [al&],

8¢ — ay=6(§, — a6, — ar)-8(¢, —a,)
1
= 7l € —a)(§, —ay)’-(E, —a,)’4.5)
[cf. Eq. (3.12)]. As in the case of (1), it is then easy to show
that

(4.4)

al€),) = €11

(4.6)
(@) lai = (&), 161,
and hence
a|E€),) =&1E).),
(4.6)
() la; = (&) ¢ -

Thus, &,’s are the eigenvalues of a,’s.

Repeating the arguments that led to Theorem 7 of (I),
we find that the orthocompleteness relation now takes the
form

(€)1 =8"¢—¢§1,

4.7
Ji©m @@, =1.
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From Egs. (4.6) and (4.6") it is clear that |(£), )’s ({(£), |s)
are the coherent states not only for a;’s but also for a™”s,
This means that all the above relations hold both in
o (' E)andin B ;(#%). Especially, the unit operator on
the right-hand side of Eq. (4.7), is the one in the larger space
B or BE.

Eigenstates or coherent states for the operators a} can
be constructed in a similar manner. The states vectors
(1.5.12) can now be written as

€, )=b"(@" — £%)0),
(%), |=(0lexp(£ *-a),

where
5'(a" — £*)=8@a} — XS], —£X )-8l — £

= L@ —enra), —£r )] — £
()
4.9)

For the state vectors (4.8) the following eigenvalues equa-
tions hold:

aMNE®), ) = EPHER,),

(4.8)

(4.10)
(€%, 1a T = (E*), 1€,
and hence
aflE*),) =EXE,),
(4.10)

(", lal = {E ") 16r.
That is to say, £ *’s are the eigenvalues of al’s. The ortho-
completeness relation given in Theorem 7' of (I) now reads

(EME*N,)y=8"E*—£%),
4.1

f(dg*)"|(§*)n> (€l =1,

where the same remark as given after Eqs. (4.7) applies to the
present case.

Furthermore, it is also straightforward to rewrite Eqgs.
(1.5.16) and (1.5.17) in a form suitable for the present case:

[ [ 1€, @, tenste ) e ., =1,
4.12)

[ [ 1€ @nlewies @), @en, =1,

and

(E* 1)) =expE*£),
(€)n1E*),) =expE£™).

Thus, in contrast with the Bose or para-Bose case the pF
operators 4; allow four kinds of coherent states. This is due
to the fact that 4,’s are bounded operators.

(4.13)

B. pG representation

We shall now show that the pF system concerned can
completely be described in terms of pG numbers when the
coherent states are employed as basis vectors in &/ .
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To do this we notice first that whether the corresponding on d; on the left-hand side s a; or

(€ ") l:[d0d,):1@€)n) a}, :[4,4,)=I[d.4,] - (Ol[(ﬁf),ﬁj(]nj())), and .
= [§A, ,fj lexp(£ *£), :[a,, 4,4, ] Em!;’dﬁ")c’i,{" 67, , _w1th t.he summation
((§ )11 (8., .4, ~4; 1+ HED ) 3’ extending over all dlﬁ‘erent‘ a,’s.” By invoking the decqm-
me position theorem and by making use of the pF commutation
= [6:. 60051, ]  expE*6) . (*.14) relation, we can express an arbitrary operator in o/ as a

Here £, on the right-hand side means £; or £ | depending on linear combination of terms of the following form:**

F'a) = [a } [ela} - (a1 (e, T b )
X [ay, a, ][ak, Wy, ]"'[ak, Wy, ] [‘IIT. ,az*.r--,azﬁ,am. W00, ] + 5 (4.15)

By using Eq. (4.14) together with Eq. (4.3") and inserting the left-hand side of Eq. (4.12), in between the last two brackets of
Eq. (4.15), we obtain the following integral representation for matrix elements of F (a',a):

(€M IF @ a)|€), )=FsE*Eexp€ *£), (4.16)

with

Fo@r)= [ [lernlendn1-leser)es 5 16365, - [63.45.]

X[i i JEgi 1 [€4 64, ]
X[EX LR b ¥ o slomyrbm |+ XPLE*E) +EE*)+ €Y E) + (EE%] (@€, (dE*), . (4.17)
As can be seen from here, the correspondence between the functional form of F (a',a) and that of F;(& *,£) is not so
straightforward as in the case of Eq. (1.5.24),, where F (x*,x) is obtained from F (a',a) by simply replacing d; with £,. This is
due to the fact that normal ordering is not always possible in the present case. For special types of F (a%,a), however, the
correspendence F (a',a) «—— Fg (£ *,£) is relativley simple. For example,

1,
[a] af, ][a] .a}, ) [a].af Y:[a], a;, ][, 0, )i ) 0 ) ay, aue, Tlan, e, ] [as, s, ]
« [§:" 1".", ][é—:ré‘r, ]'" [fff’§f,][§}", ’gj“. ][é"};vgf, ]'" [gi’é'f, ][;k, ,§k’. ][gk;’é_k'; ]'" [gk, ’gk’, ] ’ (418)

el .l malia e, L e [ERERERE £ 6 ]
Needless to say, to a general observable given by £ F(a',a) there corresponds the expression £ F (£ *.£).
Conversely, when F (£ *,£) is given, the corresponding operator F (a',a) is found from

Fla'a)= f f €0, YFG(E ¥ E)E), |expLE € %) + E¥E) + E£ )] (dE "), (@E ), (dE), [dE®), . (4.19)

which is easily derived from Egs. (4.16) and (4.12),. The above relations (4.16) and (4.19) indicate clearly that there exists a
one-to-one correspondence between F(a',a) and F (£ *,£).

Let us now turn to state vectors. Given a state vector | ) in o/, we define the corresponding pG representative or pG
wavefunction by

Y EH=(EM.| ) (4.20)
and its adjoint by

vE)=( |¢).)- (4.21)
Thus, the vacuum state |0), in particular, is represented by

Y€ ®) =o(€) = 1. (4.22)
As in the case of Eq. (I.5.21), the use of Eq. (4.12), yields

= [[ 1@ @empies e, @, (423)

thereby implying that the one-to-one correspondence exists also between | ) and ¢ (£ *). The inner product of two state vectors
[1) and [2) is given as

21y = f f V€€ Iexp(E-£ *) (dE), (dE™), , 4249
and hence the normalization condition for ¢ (£ ) takes the form
[[p©wememes @)@, =1. (425)
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More generally, for an operator F (a*,a) we find from Egs. (4.16), (4.12),, (4.20), and (4.21) that

GlFEal = J P26 W& * £ & Dexpl€ 6 %)+ E*€) + EE)] (@), @E*),(dE), @™, , (4.26)
which corresponds to Eq. (1.5.25). The Schrédinger equation for 1 (£ *) is written in the form [cf. Eq. (1.5.26)]

. d *

i —~—¢a(f L - f Ho€*¢) ¥ E*)expl *£) + €6 %)) (), (™), , @2

where H; (§ *,§') is obtained from H (a”,a) according to the prescription given above. We have thus found that the quantum
mechanics of pF systems can completely be described in the pG as well as ordinary representations.

Lastly, as an example of the use of the pG representation we shall show how the path integral method is formulated for pF
systems. Let U (¢ ,,¢ ;) = exp[ — iH (¢, — )] be the time-evolution operator, where ¢, and ¢ ; denote the initial and final
times, respectively, and let { f |U (¢ ;, ;)| /) be the transition amplitude from an initial state |/} to a final state | f). As usual,
we divide the time interval ¢ , — ¢, into N equal segments: (t, —t ,)/N=A4t =t, —t, ,,wheret, =1¢,, t, =ty,and
k = 1,2,--,N. For N sufficiently large we can write

(@;‘;\'))n U(’k’tk—l)‘(g(kfl))n> = ((59?;\-)),1 ](1 - iAtH(a*,a))I(é'(k_l)),)
=exp[(€ &) bu 1) —idt Ho€ %) b 1))]- (4.28)
On the other hand, we obtain by a repeated use of Eq. (4.12),

SV = Jim (f UGty Ut WUt i)

= tm [ 3, Gu)ER),

N-—

(€ U C DI E) e o] = 5 €0ku] TT @@ty (429)

where (£ *)and ¢ , (£ ) are the pG wavefunctions for the states |/) and ( f |, respectively. Substitution of Eq. (4.28) in (4.29)
then results in

U(t N’t N—1 ) |(§(Nw l))n )((5?‘2))" I U(t 27t 1),@(1))n>

(10N = Jim o[ 3, Eoexe( [ iaeL )t TT @@t (4.30)
- » K=0 (=0
where
LkEi(ga)'_g(k)—_Af(u)_HG(gz;c)’g(k-—l))v (4.31)
with
.y =Hg€h6-1,)=0, ie, Lo=i(f % &)/ At. (4.32)

Thus, the usual path integral method”® for the case p = 1 has been generalized to the case p>2. In carrying out the above path
integral it is convenient, however, to employ the Green representation where the integration variables are gG numbers. As has
been discussed before, ' this is equivalent to reinterpreting pG oscillators as Fermi oscillators with an internal (not necessarily
hidden) degree of freedom.

Before closing the present paper let us add a few words about the case of para-Bose systems. Obviously, the above method
cannot be extended to the para-Bose case in a straightforward manner. In particular, we encounter a difficulty in defining
integrals for those variables which are to play the role of eigenvalues of para-Bose operators. The problem still remains to be
investigated.
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*Preliminary results were reported in M. Omote and S. Kamefuchi, Lett. ’Y. Ohnuki and S. Kamefuchi, Prog. Theor. Phys. 54, 1860 (1975).
Nuovo Cimento 24, 345 (1979). To our knowledge the earliest work that *Y, Ohnuki and S. Kamefuchi, Quantum Field Theory and Parastatistics,
considers this kind of generalization is J.L. Martin, Proc. R. Soc. (Lon- Soryushiron Kenkyu (Kyoto) 55, (1977), special issue.

don) Ser. A 251, 543 (1959), and the first author who introduced the term Y. Ohnuki and T. Kashiwa, Prog. Theor. Phys. 60, 548 (1978).
“para-Grassmann’ is A.J. Kalnay, Rep. Math. Phys. 9, 9 (1976). '°K. Driihl, R. Haag, and J.E. Roberts, Commun. Math. Phys. 18, 204
*Y. Ohnuki and S. Kamefuchi, J. Math. Phys. 21, 601 (1980), to be referred (1970); Y. Ohnuki and S. Kamefuchi, Prog. Theor. Phys. 50, 258 (1973).
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This paper is the follow-up of an earlier one. It reviews some of the lesser known ideas involved in
the representation theory of Clifford algebras and applies these ideas in computing explicit
realizations of the spin groups and the Lie algebras appearing in the previous paper.

1. INTRODUCTION

This paper is a continuation of an earlier article,' her-
einafter referred to as I. Whereas I is concerned with a defini-
tion of the spin group associated with the homogeneous Ga-
lilei group and also with a number of related matters, part II
deals with the more down-to-earth problem of representing
(by matrices over possibly noncommutative fields) the Clif-
ford algebras and spin groups of I. Thus, in particular, the
fundamental space of Galilei spinors is identified.

As noted briefly above, and in I, in order to deal effec-
tively with Clifford algebras corresponding to real orthogo-
nal spaces of arbitrary dimension, one needs concepts gener-
al enough to be applicable when dealing with
noncommutative fields (in fact the quaternions). The reason
for this is that these higher dimensional Clifford algebras
turn out to be isomorphic to matrix algebras over R, C,and H
(reals, complexes, and quaternions, respectively).

It is not the intent to enter into the subtleties mentioned
in any more depth than is necessary to provide a systematic
computation of the spin groups at hand: namely the de Sitter
and Galilei spin groups. However a review of basic notions
concerning R-, C-, H-linear spaces (e.g., semilinear maps,
correlations, antiinvolutions, correlated spaces) is provided.
Several general results on conjugations in Clifford algebras,
useful for computation of spin groups, are given. For this
background material, Porteous? is used extensively as a ref-
erence. Indeed, the basic results required, including theo-
rems of this nature are merely stated here without proof, as
proofs may be located in Porteous.

After these preliminaries, we calculate the de Sitter and
Galilei Clifford algebras and spin groups in their matrix re-
presentations. Matrix analogues of results in I are given and
we end the discussion with the matrix representations of the
relevant Lie algebras.

2. ALGEBRAIC PRELIMINARIES

In this section K will denote either R, C, or H where His
as usual, the real associative algebra generated by a basis
f1,1,], k } subjecttotherelations:? = = k2 = —1 =ijk.

A will denote some K* = K X K X --- X K (s times), to-
gether with the usual direct product ring structure (written

“Supported in part by a National Research Council of Canada Postgradu-
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A = 'K), in addition to:
(kly kz’ ] ks) + (k ;’ ké’ i k \')

=(k1+k;’k2+k£v'"yks+k;): (2.18)
(kyy Ky, ooy k)" = (Rok ', Rk, ooy K
} ) 1 2 3 )], (21b)
k(k {y kg k) =(kk i, kk 3, kk )
(k) = (ak Yk’
a-(kk 'y = (a-k )k 219

(kk'ya=k(k"a)l’
for all k, k 'eK and all a€A. A is then a K-/inear algebra.

A right (left) linear space over A or a right (left) A-linear
space, is just a right (left) A-module where the ring A is not
necessarily commutative or with unit. The standard example
of a right A-linear space is A" = {(a,, 4,, - ,a,,)} with the
usual right A-module defining axioms.

AnR-linear mapping ¢ of right or left A-linear spaces X,
Y is said to be semilinear over A if there is an automorphism
(a) or antiautomorphism (aa) ¢: A— A such that for all xeX,
AcA:

(@) r(x-A)=t(x)¥1),

or

t is right semilinear, (2.2a)

HAX) = YA )1 (x),
when ¢ is an automorphism;

(aa) 1(x-d)=y(A)1(x),

t is left semilinear, {2.2b)

t is right-to-left semilinear,
(2.2¢)

or

t(A-x) =t(x)¥A),

t is left-to-right semilinear,
2.2d)

when # is an antiantomorphism.
Unless 7 = 0, 9 is uniquely determined by ¢. One often

says that ¢is A “linear, the semilinearity being determined to
an extent by .

It is helpful to keep in mind the following examples
which indicate some possibilities (Ref. 2, p. 199): Here
A=H=(1,ij,k),X=Y=H;t:X—>Yand ¢: A—A as
follows

Drx)y=x Pi)=4,

(i) 1 (x) = ax, 0#acA; YA) =24,

(ii) 7 (x) = xb, O£ beA; YA)=b"'Ab,

(iv) t (x) = axb, O%a, beA; YA )=5""Ab,

W tx)=jxj )= jy.

Examples (i) to (v) are all of right semilinear mappings,
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whereas the following ones are right-to-left semilinear:
A=HX=Y=H

W)t ) =xy); ¥Ad)=A4,

(i)t (e, p) = (5, X); $A) =4,

For X, Y both right (left) A-linear (i.e., ¥ is the identity
automorphism of A), L (X, Y') denotes the family of A-linear
mappings which is itself generally not an A-linear space
(right or left). The dual space X © = L (X, A) of a right (left)
A-linear space has the structure of a left (right) A-linear
space; forteL (X, A),xeX,AcA wehave (A1 )(x) = A-t (x)[re-
spectively (£-4 )(x) = ¢ (x)-4 ].Ift : X—Yis A"-linear, then for
all yeY X, y'yreX -, (This is fairly straightforward and en-
tails checking the four possible cases of semilinearity. The
maptt: YEuX byt (y) = ¢'ytiscalled the dual of t and
is A¥'-linear (again one checks case by case).

A correlation on a right A-linear space X is an A-semi-
linearmap ¢ : X—X*. The map X X X—A, (x, y)—£ (x)- yis
called the product induced by the correlation (it is analogous
to inner product) and the map X— A, x—£ (x)- x is the form
induced by the correlation (it is analogous to quadratic
form). Although R-bilinear, the product is generally not A-
bilinear (recall Hermitian inner products which are sesqui-
linear). An A correlation £ : X—X " is symmetric or skew if

for all a, beX,
W £ @)d)

b)a —
sb)a [—¢(§<a>-b)

A symmetric product £ over C¥, H” where ¢ is the conjuga-
tion antiautomorphism is said to be Hermitian. A reflexive
correlation £ has the property that for all a, beX, £ (b )-a
= 0=¢ (a)-b = 0. Symmetric and skew correlations are
rdflexive. An invertible correlation is said to be
nondegenerate.

The following results (proofs to be found in Ref. 2, pp.
207-10) are important for later material.

Proposition 2.1: Let £, n be nondegenerate AY-correla-
tions on finite dimensional right A-linear spaces X, Y respec-
tively and let 7 : X, ¥ be A-linear. Then there is a unique A-
linear map t * : Y—X such that for all aeX, be¥, (b )-t (a)

=£(t*(b))-a. (Infact 1 * = £ 't “n and is called the adjoint

of ¢ with respect to £, 7. When ¥ = X and 5 = £, the adjoint
t* with respect to £ is denoted by ¢ and 1 is self- or skew-
adjoint if 1 = ¢ or — ¢, respectively.) DO

Proposition 2.2: Let X be a finite dimensional right A-
linear space. Then any antiinvolution of the real algebra
End(X) = L (X, X) is representable as the adjoint anti-
involution induced by a nondegenerate reflexive correlation
onX. 0

Finally, one last notion. An A ¥-correlated space (X, £)
isaright A-linear space X with an AY-correlation £ oniit, and
(X, £) will be said to be nondegenerate, reflexive, symmetric,
orskewif & has the respective property. It is totally isotropic if

£ is zero and neutral if X is the direct sum of two totally
isotropic subspaces.

Two examples:

(i) X = A” right A-linear, with the A “-sesquilinear
product (¢ is an antiinvolution: ¥ = identity and ¢ is an
antiautomorphism):

symmetric case, (2.3)

skew case.
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A*XA’>A by ((a, b),(@, b)) >(b)a + Ya)b’,
is a symmetric, neutral, nondegenerate A¥-correlated space
called the standard hyperbolic plane A}, .

(ii) X = A? with product (again ¢ is an antiinvolution)
A*X A*—>A by ((a, b),(@, b)) l->¥(b)a — a)b’,

is a skew, neutral, nondegenerate A Y-correlated space called
the standard symplectic plane A!,.

3. CLIFFORD ALGEBRAS AS ENDOMORPHISM
ALGEBRAS

We shall denote the real endomorphism algebra
End(A") =L (A", A™)by A(m), with A " right A-linear. As
in, R"™%n = p + g + r) denotes the space R" with bilinear
form diag(o, -+, 0, —1, -, —1, 1, .., 1) containing r zeros,

p minus ones, and ¢ plus ones; R% is abbreviated to R,
The universal Clifford algebra associated with R™"¢is denot-
edbyR, , , withR, , as the abbreviation for R, , ;. We have

r.p.q*
the following results (Ref. 2, pp, 248-9):
DR, =R, ; (3.12)
i) R, ,.,=R, R, =R, eH(2); (3.1b)
(i) R,,,, =R, eR(16)=R,,(16). (3.1¢)

Every R, , is of the form A(m) for A one of R, C, H, °R,
’H, and A" is called the rea! spinor space of R”“ and it ele-
ments are the R” spinors.

For the usual examples of physical interest we have the

following (recall from I, (2.7):R;,, =R, ,,_, =R, , , for
even Clifford algebras):
(i) R”=R"* (Euclidean 3-space),
3.2)
Ros = ZH; Ros = Ry, =H;
(ii) R =R"? (Minkowski space-time),
3.3)

Rl,_\ = H(2), R]ﬁ! =R, = C(2);
(i) R~ =R'* (related to de Sitter space-time),
3.4)
R,, = H(2); R}, =R, , = H(2).

As noted at some length in I, Spin (Galilei) is a stability
subgroup of Spin (de Sitter) in addition to the inclusion
R,.:CR,,, = R, , of universal Clifford algebras. This en-
ables us to realize Spin (Galilei) by first representing Spin (de
Sitter) and making a suitable restriction, thereby requiring
only the theory for nondegenerate orthogonal spaces.

To tie things together, the ensuing results are essential.

A correlation on the spinor space induces an antiinvolu-
tion (the adjoint) on its endomorphism algebra (i.e., the Clif-
ford algebra) and conversely by Prop. 2.1, Prop. 2.2, any
antiinvolution of the Clifford algebra is induced by a sym-
metric or skew correlation on spinor space. It is necessary,
therefore, to know the appropriate correlation. To this end
we have (see Ref. 2, pp. 265-70):

Proposition 3.1: Conjugation on R, , is adjoint induced
by the standard positive-definite correlation on spinor space.

]
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Proposition 3.2: For R, , = End(A™) = A(m), with
p>0and (p, g)#(1, 0), conjugation is the adjoint on A(m)
induced by a neutral semilinear correlation on A”.
0
4. SPIN (DE SITTER) AND SPIN (GALILEI)
CALCULATIONS

First the de Sitter calculation.
As noted in Sec. 3., R,, = H(2) = HQ) o H(2) and

R,', = H(2). Let us put F, =f, & (—f,), 0<a<4, where f,
€H(2) are the following:

ﬁ’=<(1) :1)’ f‘z(—ol (l)) f‘=(? :))
£=(5 0 »=C o)

For a similar but not identical choice see Refs. 3 and 4. One
readily verifies that:

O fufy +ffo = — 2815

(4.1)

@ab) = diag( - 1,1,1,1,1) ’
(4.2a)
F,F, + F,F,= ~2g, 1,81,= —2g,°-1,; (42b)
() HQ) = {fo fi, /s[5 f+) = R-algebra generated by
{f,] is of R-dimension 16 and that
H(2)® H(2) is of R-dimension 32
Gii) R} = (F,F, :a<b)=(/[, f, :a<sb)
= (SoLufofu fa) =HQ), (4.2¢)

the second last equality holding because f; f, 2/5./2 =1,
since H(2) is a nonuniversal Clifford algebra for R'.

In view of Prop. 3.2, the correlations on H” are of inter-
est and to the examples of Sec. 2, we add another. Let ¢/be an
antiinvolution of H and consider the symmetric product
H? x H>—H by ((a, b),(@’, b")) >a)a’ — (b )b'; let’s de-
note this product by (.,-)..

Summarizing our three examples of correlations, we de-
note the induced products by (-, .. » dccording as

hyp.

Yb)a' — @b’
Y(b)a' + a)b’,
Ha)a' — Y(b)b’
where (a, b), (@', b )eH?; ¢ is an H antiinvolution. Now, up
to isomorphism, there are exactly two antiinvolutions on H:

conjugation (¥(a) = @) and reversion with respect toj
(¥(a) = jaj'). For a proof, see Ref. 2, p. 181.

(@, b)(@, b)) = 4.3)

We compute the adjoints associated with (-,-) o I
hyp.

= (¢ 5)eH(2), then ¢+ = (* ") s determinea by
y & & o

(t*@a,b),(@,b")) = ((a,b),t(a',b")),whichinthesymplectic
and hyperbolic cases means:

(t*(a, b),(a, b)) sp.
hyp.

= <(Ka + Ab! pa + vb )’(a” b ’)) sp.

hyp.
= Y pa +vb)a' T dka + Ab)b "
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= Y@y wa' + Wa)(F Y)b’

+90)wa' + Wb F A, ‘4

but
(@b) 1@, b))
= (@@ b)aa' +Bb",ya' +8b7) ,

— Wb )aa' +Bb") T Wa)ra + 56"
(b )ad’ + b)B’ + YN T’ + HaX T OB,

so 4.5)

k=90, A=TF¥B), p=FU, v=¥a)),
(4.6)

hence

a By _ (WO  THB -

(7 5) ’”‘_($¢(r) Ha) ) ¢

Turning to {-,-).:
(t*(@a, b)(@,b"). = {(xka+ Ab,ua +vb), (@', b")).
= t(ka + Ab)a' — Yy(ua + vb)b’
= P@)yk)a’ + Ya)( — Pu)b’
+ YA )a + b )(— ()b’ ,
4.8)
(@, b),t(@,b"). =((ab),(aa" +pb’,ya’ +6b")).
=Y(a)aa' +Bb") — Yb)(ya' + 6b)
= (a)aa’ + Ya@)Bb’' + Y(b ) — y)a’

+ Wb =6, “4.9)
so
k=Wa), A= -9y, p=—¥WB), v=¥ &),
(4.10)
hence
a BY a) — )
G = W) @10

Two of the seemingly better known representations in
the de Sitter case will now be derived and their connection
indicated. For a related discussion see Refs. 3 and S.

With respect to the reversion antiinvolution on H,
av>jaj' (11, iv>i, j> — j, ki>k), the symplectic cor-
relation defines the adjoint on H(2) by the formulas:

i=o =057 ) =%
(4.12a)

A G S

fi= (0 j)'= (-Z(D —g(;)) —f, @12)

J 0
fi= -1, (4.12d)
(4.12¢)

fi=—fi.
Now R, =R, ; = (/fo, /1, /5 f4) and the adjoint so defined
is conjugation on R/*,; moreover N, (s) = 5 = s*s,
s€H(2), defines the norm obtained from the symplectic cor-
relation with the result that [for Spin*(1,4), see I, p. 956,

(5.4)-(5.5)]:
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Spin’(1,4)

Jo( ) G 5=

(& 2):var-vo=1. wor=wpw.

a = ¢(a)1'] ,
and () = jaj'.
Next, with respect to the conjugation antiinvolution on
H the symmetric, neutral correlation (with product (-,-).)
induces an adjoint on H(2) defined by:

R B (R By ptes
= C (% ) -a e
fi=f, (4.13¢)
fi=Af, (4.13d)
fi=f.. (4.13¢)

An easy check shows that { £, f,: @ = 0,1,2,3} is an orthon-

ormal basisof R, ;,s0R Y, =R, , = (/o fu i fufafu [ 1)
Furthermore (£, f,)* =ff. = fif. = —f. f. and this

adjoint coincides with conjugation on R,%,. Therefore, with
N(s) = s*s

Spin*(1,4)

=aB .a,B‘aB_IOI
[(7 5)‘5“(2)' (y 5) (y 5) = (o 1)

[ D) tar -t =1=157- 180, a-7.

This latter representation also yields the result:

Spin*(1,4)

=Sp(1, 1)

= {seH(2), leaving the form ((a, b), (a, b)). = |a|*
— |b|? invariant},

[for |a]* — [¢I2 = 1 = |8 |* — |B|%, @B = 75, iff

(1 0y 0 _[a B -

s (0 _1)s— (0 _1),wheres_ (}/ )ands

é
= transposed conjugate of s].
Equivalence of these two definitions of Spin*(1,4) fol-
lows because N(CsC ') = N, (s) for

1 _
C=(1/v2) ( ; 1’ ) and for all seH(2). In summary
we have:
Theorem 4.1: Spin’(de Sitter) = Spin*(1,4) = Sp(1,1)

a

= [ ( ﬂ) €GL QH): |a|* — [y[?=1=18]"— |BI?,
y 6

or alternatively with ¥(a) = ja@j',

Spin*(de Sitter)

= { (Z ?) €GL (2;H): (a)d — ¥()B =1,
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ke = W)y, WBYS = WO

Finally, the Galilei calculation.
Keeping previous notation, let

e(,=(1/\/z)(j2)+f,), e=fi, ea=f,, es=fi,

(4.142)
E,=e,o(—e), E =F,, E,=F,, E;=F,.
(4.14b)
Then
EE; + EE, = -2y l01,= —27,41,, 4153
e.ey+eze, = —27.51,, (4.15b)

where (y,5) = diag(0,1,1,1) and a, 8 = 0,1,2,3. A tedious
but elementary computation shows that

dimn (E()) EI’ EZ! E3>

= dim spang {1, Eo, -, EoE,, -+, EoE\E;, -, E,E\E,E;}

= 16,

and hence that { E, } is an orthonormal basis for R, , ; . Note,
however (recall I Prop. 2.1), dimg {e,¢,,€,,6;) = 12, and
hence R, ; # (eq.€,,€,,€3), contrary to what might have
been guessed on the strength of the de Sitter situation. Of
course,

R/%s = spang { LEGE,, EoE,, EGEs, E\E,, E,E,, E,E,,

EoE,E,E;}
= (EoEz,E]Ez,E2E3) = (eoez,elez,eze3) y
is of dimension 8. (That e,e,e,e, = — ey, is useful in calcula-

tions.) With respect to (-,-). of the de Sitter case, we calculate
adjoints:

eo = (/N Do +£0* = (/N DSy + £ = o

(4.16a)
el =e,, e, =e, € =eé, (4.16b)
sowhena#p, (e,e;)* = — e, ez, and conjugationon R ;,

is given by this adjoint. With a minor notation change
(8 °—e,), translating I, Thm. 3.1, we have

Spin (Galilei) = Spin(G,)
={a+be:(a + @'y
+ @) + @)y =1,
a®° +a'b' +a*h? +a’h® =0},
where
a =d’1 + a'e,e, + a’ese, + a’e e,
b=>b"1+b'ee; + blese, +bee,

e = eye,6,6; = — &, , as noted previously.
In matrix form

wmanm (L, 1) e 2)

i 0 _(j 0
€63 = (0 i) y €38 = (0 J) R
s—a+be— (a—(l/\/_Z-)B _(1/\/5_)3)
ANVDB  atr(1NVDB
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Since

. ( a— /N3
—(=(/V2)B)
we have:

Theorem 4.2:
_ [ (a —aN2 —aNV28 )
Spin (G,) = :
AV a+(/NV2B

la] =1, @B + Ba =o],

_ (1/\/5)5)
a+a/Ng/)

moreover (I, Sec. 5), Spin (Gy) = {s € Spin* = (1,4) :
seos™! = e,] as may be seen by direct calculation.

5. THE LIE ALGEBRAS

From I Sec. 6. and notational changes X °— f,, 8 “—e,,,
we write in matrix form, the generators:

n=nn=i(l ) n=wnn=i(l9)

J
n=1nhi=1(5 2)
ki=infi=i( 2, o) ki=wen=a(° D)
Ks=4ht= 5( ok l(;);
ri=infimi(50 D) Pi=asn=i(Y0);

ri=insi=y(° ) E=1n=i( ).

of the de Sitter Lie algebra, and

i 0 i 0
J«‘;"—‘%eze::i(o i); Jé-‘-iesel:i(é j>;

kK 0
”5:58“’2:5(0 k);
i).
_i’

K& =lee, = (1/2\/5) ( _il
& =lege, = 5(1/2\/5) ( _jj _J_ ) ;

Ki=pe=a2Va( 5 ),

—k
of the homogeneous Galilei Lie algebra.
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The one-parameter groups within Spin (Galilei), Spin
(de Sitter), corresponding to rotations (angular momentum)
and boosts (inertial transformations), and in addition in the
de Sitter case, to spatial translations (linear momentum) and
time translations (energy), are obtained by matrix
exponentiation.

Many computations are more efficiently done in matrix
form rather than in abstract Clifford algebra form.

6. COMMENTS

The basic matrix representations of Spin (de Sitter) and
Spin (Galilei) have been derived and their relationships
outlined.

It is significant that a representation theory of arbitrary
degenerate Clifford algebras (R, ,, with 7> 0) has not been
worked out. This appears to be an open problem which is
complicated by the fact that R, , , is in general not a semisim-
ple algebra (yet another manifestation of the degeneracy of
the Galilei “metric” (y,5) = diag(0,1,1,1) when r =1,
p=0,and g =3).

For those uneasy about matrices over the quaternions,
the H(2) representations may simply be converted into C(4)
representations by using essentially the Pauli matrices in a
C(2) representation of H. In fact it can be shown that there
are exactly two inequivalent C(4) faithful representations of
R, .1 and these are of least C-dimension, and both obtained
from the corresponding lowest dimensional C-representa-
tions of R, ,. This indicates some of the complexity referred
to in the preceding paragraph, and serves as partial justifica-
tion for the “embedding approach” used throughout.
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A note on the symmetries of the 3j and 6j coefficients. |
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It is shown that the study of the symmetries of the 3j coefficient in terms of the set of six ,F,(1)’s
derived by us introduces a six-to-one homomorphism of the 72-element group of symmetries of
the 3j coefficient on to the 12 permutations of parameters of a single ,F,(1) series of the set. Also,
the study of the symmetries of the 6j coefficient in terms of the set of three (four) ,F,(1)’s derived
by us introduces a three (four)-to-one homomorphism of the 144-element group of symmetries of
the 6] coefficient on to the 48(36) allowed permutations of parameters of a single ,Fy(1) series of

the set.

3/ COEFFICIENT

In a recent paper' we derived a set of six ; F,(1)’s for the
3 j coefficient and discussed the 72 symmetries by giving an
explicit form of the five Regge? symmetries of the 3 j coeffi-
cient. The six ; F,(1)’s of the set are given in Appendix A.
Each one of the six ; F,(1)’s describes 12 symmetries of the 3 j
coefficient. The 12 symmetries listed in Table I of Ref. 1 get
mapped on to the 12 permutations of parameters of the
1 F,(1) series given by Eq. (A1) as follows:
ABC,DE, ACBED,
CAB;DE,
BAC,ED,
BCA;DE,
CBAED,
BAC,DE,
CAB;ED,
BCA;ED,

CBA;DE,
ACB;DE,
ABC,ED.

While all the six ; F,(1)’s are necessary to describe the 72
symmetries, each describing 12 of them, the 12 permutations
of parameters of a single , F,(1) series of the set are sufficient
to account for the 72 symmetries of the 3 j coefficient. We
have explicitly listed the 12 symmetries each described by
the ; F,(1)’s given by Eqs. (A2)(A6). A calculation of the
parameters of the ; F,(1) series corresponding to these sym-
metries clearly shows that the 12 symmetries each described
by the ; F,(1)’s given by Egs. (A2)-(A6) get mapped on to
the 12 permutations of parameters of the ; F,(1) series given
by Eq. (A1). As an illustration of the proof, the 12 symme-
tries each described by the 5 F,(1)’s of Egs. (A3) and (A4)
and their mapping on to the 12 permutations of parameters
of the ; Fy(1) series given by Eq. (A1) are given in Tables I
and II, respectively.

TABLE I. The list of 12 symmetries of the 3/ coefficient described by the ; F,(1) series given by Eq. (A3) and their mapping on to the 12 permutations of

parameters of the . F,(1) series given by Eq. (A1).

(S +m)+ i+ m) (s —m)+ (i —m)

2 4 2
—+ABC,ED
Gt+m)—CGitm) . . CGi—m)—(h—m)
L= h
2 2
= my) + 4 - my) j (bt m)+(i+m)
2 ‘ 2
—ACB;DE
(jz'mz)'(jl—ml) C_ (jz+mz)_(j3+m1)
2 hTh 2
j\+j\—mz j|+j2-m,\ jz+j3"‘m|
2 2 2

h—my)+h—h =5y (h—my+{(ji—ih—j)

—ABC,DE

h—m)+(h~f—F)

2 2 2
T +j_x+m| j; +j2+m3 jl +j:+mz
2 2 2

Urtmd+Gi—p =iy Ghtm)+ (=i —j)

—ACB,ED

(o +m) + (o —js "jl)

2 2 2
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Ji+i—m htih—m
2 2 2

Gr+ih—i)—(o—m)  Uatjs—j) — (/i —m)

hth—m

—BACED

(i +h—4)—(h—m)

2 2 2
}.z +j3+m1 j1+j3+mz j1 +jz+m3
2 2 2

—>CAB;DE

Ui+ —J) —(h+m)

ot —J)— Gt m)  Gh+is=j) — (o + ma)
2 2 2

3
=,
3

(jo — my) + (j, — my) U+ ma) + (s +my)
2 2

\(/s —m)—{(—m) (+m)—(i+m)
2 2

(i+m)+(j+my) (Ji—m)+(h—m)

2 2
—BAC,DE
(js+m1)—(j|+m1) (js—mx)“(jl_ml) :_ /
=
2 2
VA (R 7 Ja 7
—BCA;DE, —CBA;ED
mn, m, m,, ~ N —m, —m,
: (i —m)+ (i —m) (it m)+(hp+m)
4 2 2
—BCAED
\ : , (o —m) — (i —m) (atm)—(j +m)
h—1n
2 2
: (pt+m)+Ui+m)  (h—m)+(ji —m)
Js
2 2
—CBA;DE
; : (o+m) =+ m) (i —=m) ~(h —my)
Jo— 1

2 2

Thus, the study of the symmetries of the 3 j coefficient
in terms of the set of six ; F,(1)’s introduces a six-to-one
homomorphism of the 72-element group of symmetries on to
the 12 permutations of parameters of a single , F,(1) series of
the set. This 5 F,(1) series is determined by the condition that
the parameters D and E calculated from the parameters of

( h & )

m, m, my

are greater than zero. In our discussion this series is given by
Eq. (Al).

6/ COEFFICIENT

In our earlier paper,’ we derived a set of three , Fy(1)’s
for the 6 j coefficient and discussed the 144 symmetries in
terms of the allowed permutations of parameters of the
« F5(1) series. The three , F,(1)’s of the set are given in Appen-
dix A. Each one of the three , F;(1)’s describes 48 symmetries
of the 6 j coefficient. The list of 48 symmetries described by
the permutations of parameters of the , F,(1) series given by
Eq. (A7) is given in Table I11. While all the three , F3(1)’s are

623 J. Math. Phys., Vol. 21, No. 4, April 1980

necessary to describe the 144 symmetries, each describing 48
of them, the 48 allowed permutations of parameters of a
single , (1) series are sufficient to account for the 144 sym-
metries of the 6 j coefficient. We have explicitly listed the 48
symmetries each described by the , F3(1)’s given by Egs. (A8)
and (A9). A calculation of the parameters of the , F3(1) series
corresponding to these symmetries clearly shows that the 48
symmetries each described by the , F,(1)’s given by Egs. (A8)
and (A9) get mapped on to the 48 permutations of param-
eters of the , F3(1) series given by Eq. (A7). For example, the
48 symmetries described by the , F3(1) series of Eq. (A9) and
their mapping on to the permutations of parameters of the
+ F5(1) series of Eq. (A7) are given in Table IV.

Thus, the study of the symmetries of the 6 j coefficient
in terms of the set of three , F3(1)’s introduces a three-to-one
homomorphism of the 144-element group of symmetries on
to the 48 allowed permutations of parameters of a single
+ Fi(1) series of the set. This . F3(1) series is determined by the
minimum of the 8°s’ in the series representation for

[a b e]
d ¢ fl’
For example, in our discussion, 8, =a + b +c¢c + d.
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TABLE II. The list of 12 symmetries of the 3; coefficient described by the ; Fi(1) series given by Eq. (A4) and their mapping on to the 12 permutations of

parameters of the , Fy(1) series by Eq. (A1).

Ji A I Lo A
(-1’ —ABC,DE, (—1y —ACBED
—m, —m, - m, m, m; m,
((jz—mz)+(j1‘ml) (i t+m)+ (i +m) :
Js
2 2
(—= D ABC,ED
(i —m)—(—m) (Gi+m)—>Gt+m) :
J:— 1
2 2
(o + m) + () + my) (—m)+ (ji—m) .
5
2 2
(-1 —ACB;DE
(o +m) — (ji+ m) (o —my) — (ji—m) P
h—5n
2 2
: (i —m) + (s —my) Gh+m)+ s+ m)
I
2 2
(-1’ —CABED
o (h=m)—(i—m) (s +my) = (i +m)
o=
2 2
j (tm)+s+my  (o—m)+(s—my)
' 2 2
(=1’ —BAC,DE
L (GhAm)y—(p+m) (—m)—(i—m)
S 2 2 /
hotj—m jz+j!‘ml jl +j3_m1
2 2 2
(=D’ —~CAB,DE
Ui+h—j)—Gi=m) (ht+j—i)—Ui—m) (i +js =) = (a—my)
2 2 2

i+ m,

J +js 4+ m;

2
—BACED

2 2

2 2
(-1’
G+ —i)—(Gatm) Git+h—iD)—(ht+m) +Js =) — G+ my)

2

i+ m )

j1 +j3+mz j1+jz+m3 ]1+js+m| \
2 2 2
(=1’ —BCA;DE
Go+m)+Gi—ji =iy G+m)+Ui—jh—j) U +m|)+(11 —h "Js)/
2 2
L h—m JiAj—m h+jh—m \
2 2 2
(=10’ —CBA;ED
(h—m)+ U —j—J») (Gr—m)+Ur—h=h) U m2)+(}2 Jr "fl))
2 2

2 A

(= my) + (i —m)
2

(-1’
( 4}71)‘—(]1-‘”1\)

2

(Js +my) + (i + m)

2
—CBA;,DE

G+ m) — (s +my)

Jr—

(+m)+ i+ my) (jo —m) + (Js —my)
2 J 2
(-’ —BCAED
(]z+m1)_(]x+mx) : : (jo—m) — (s —my)

2
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TABLE I * The list of 48 symmetries (Ref. 4) of the 6/ coeflicient described by the permutations of parameters of the . F(1) series given by Eq. (A7).

a

d

d,

(4]

b e
—ABCD,
c f

d f
—DCAB,
a e

b, f
~DCBA,
[ )

a,

d,

€

>

CU

€4

b,
[t
a,
d,

41

b,

d.

ds
b

o
d,
a.
a,
4,
b,
Cy
d,
a,
o
b,
a,
d,

Cy

a,

b,

[

€
—CBAD,
A

&,
—DBAC,

Ca

€
—DABC,

f:}
} ~—CABD,

b,

—BDC4,

fi
—ADCB,
e,

—ACDB,

5
—BCDA,
€

}-—»DBAC,
dy

—CBAD,
}——»CAED.

d,
—DABC,

—BDCA,

—ACDB,

|
|

—BCDA,
a,

[
{i
E
{2

g1

s

[

3

A
[

5

2
4
s
2
2
s
;
2
C:
b
b
.
e
|
a
i
E
j
i
/2
i
a,
)

€,

3

5

™

s

d,

as

b,

(&)

€s
S
(2}
b,
[£]
5
]
b,

5

es

b,
C:
£
€s
a;
4,
€
Nz
d;
a,

€s

d,

a,
S

€

|
|
|
|

a;
—DBCA
d,

as
—CBDA

[

d;
a,
—CADB
a,
d
—DACB

—BDAC

—ADBC

—BCAD

—CBDA

—DACB

b,
—DBCA
Cs

—CADB,
by

C;
—ADBC

e e s and

b,

Cs
—~BDAC

e

b

b,
-—+BCAD

[N Y)

[

b,
—ACBD
Cs

“The first 24 symmetries in this table correspond to the denominator parameter permutation EFG and the next 24 symmetries in this table correspond to the

denominator parameter permutation EGF.
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TABLEIV. " The list of 48 symmetries (Ref. 4) of the 6; coefficient described by the , F,(1) series given by Eq. (A9) and their mapping on to the permutations
of parameters of the , F(1) series given by Eq. (A7)

———
< = '~ o

=~ SR W C

S

€

—ABDC,

—CBDA,

—BACD,

d,
—BCAD,
a,

—ACBD,

—CDAB,

Cs
—~CADB,
b,

—BADC,

—BDAC,
b‘

{bl
G
'a‘
d,
<
b,
d
C

4

|
.
j
A
A
}

{al
d,
[b‘
Cs
d,

i

4

4

d,

a
c
b
a
Cs
b,

|
|
|
|

[dl
@,
bh

Cy

€

S
b,

Cy

€,

A

Cs

fi

€,

Cs

fi

€

Cs

€

fi

a,

/i

€,

a,

fi

e,

a,
—DBAC,

£,
d

—CABD,

|
|

a,

fi
—ACBD,

—ACDB,

i
|

a,

€,
—CADB,
fi

a,
—BDCA,
d,

fi
—BDAC,

[

b,
—>CBAD,

(4

€,
—CBDA,
S

[
—DABC,
b,

L
—ADBC,

Cy
—ADCB,
b,

—BCAD,

a,

€

d;

as

£

€,

f
by

Cs
f
€
Cs
by

£

e
b,
cs

€;

£

s

bﬁ

b,

-—+ABCD
[
b,

—CBAD
Cs
b,

—DCBA
(&
Cs

—DABC
b,
(&

—~CDAB
b,
Cs

—ADCB
b;
Lo}

-+BADC
b,
b,

—BCDA
<
a,

—ABDC
d,
as

—DBAC
d,
a,

—CDBA
d,
ds

—CABD
a,
d,

—DCAB,
al
d,

—ACDB
as
d,
a,
as

—BDCA
d,

“The first 24 symmetries in this table correspond to the denominator parameter permutation EFG and the next 24 symmetries in this table correspond to the

denominator parameter permutation EGF.
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We had also derived® an equivalent set of four , F5(1)’s the set II of , F,(1)’s introduces a four-to-one homomor-
for the 6 coefficient. The equivalence between the two sets phism of the 144-element group of symmetries on to the 36
of , F;(1)’s has also been discussed earlier. The , F,(1)’s of set allowed permutations of parameters of a single , F;(1) series
II are given in Appendix A. Each one of the four , F;(1)’sof  of set I1. This , F(1) series is determined by the maximum of
set IT describes 36 symmetries of the 6 j coefficient. We have the a’s’ in the series representation for
explicitly listed the 36 symmetries each described by a single
+ F»(1) series of this set. A proof similar to that given above a b e
for the set I of , F3(1)’s is given for the set II of , F,(1)’s and [d c f]
examples are given in Tables V and VI. This shows that the
discussion of the symmetries of the 6 j coefficient in terms of We have chosen a, = a + b + e in our discussion.”

TABLE V. " The list of 36 symmetries (Ref. 4) of the 6/ coefficient described by the permutations of parameters of the , F3(1) series given by Eq. (A10).

a b e a, b e e b a
—EFG, —FEG, —GFE

d ¢ f d ¢ A £ 4.

b, a, e e, a, b, bs e a
[ —EGF, [ ] —GEF, [ J —FGE

¢ do f fiodi e e fi d

b a e b, a e e, a, b

{ —EGF, [ } —GEF, {/ } —FGE
c d f o d f O
a, b, e e, b, a, a, e b

l —EFG, [/ ] -—+FEG, { ] —GFE
di o fi R A d £

a e b a, e b b, e a
—FEG, —EFG, —GEF

o fi 4

e, a b, b, a, e, e, by, as
—FGE, --+GFE, —EGF

3 d} Cs c, d, ﬁ . ¢ ds

e a b e, a b b a e
—FGE, —GFE, —EGF

d ¢ i d| [ C2 dz ﬁ

a e b b, e a, as by e
—FEG, —EFG, —GEF

d, f; G d; ¢ f;

e b a e, b a a b e
—GFE, -—FGE, —EFG

c d T e d d, ¢ f

b, e a a e b b, a; e
~+GEF, —EGF, —FEG

() f‘ d. d, f; Cy ¢ ds f,

b e a b, e a a e b
—GEF, —EGF, —FEG

c f d o fi 4 4 fi o

e, b a, a, b, e, e; a, b
—GFE, —FGE, —EFG

Vo6 d, d ¢, f. s dy o

“The six symmetries present in the first two rows of this table correspond to the numerator parameter permutation BCD. The subsequent five sets of two rows
of symmetries in this table correspond to the numerator parameter permutations CBD, BDC, DBC, DCB, and CDB, respectively.
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TABLE VL. The .lis( of 36 symmetries {Ref. 4) described by the, Fy(1) series given by Eq. (A.12) and their mapping on to the permutations of parameters of
the , Fi(1) series given by Eq. (A10).

b d f b d f] e d o
—FEGF, —GEF, —FGE

c a4 e € a, € 2 a b,

a, ¢ S P d, e ¢
—EFG, —FEG, —GFE

d b, e e, b, d, as fs bs

a ¢ f a ¢ fi e, ¢ d
—~EFG, —FEG, —GFE

d b e d, b €, )

b, do f fo di b, ¢ e d
—EGF, —GEF, —FGE

e a e e a, o b, f a

e d Cc €y dl ¢y b: dz f?
—FGE, —GFE, —EGF
a b y 4 b ¢ @ 6
a; f\ C; Cy f; a, ds b fi
—FEG, . EFG,

b, e d. a, ¢ e

b, fi 4
—EFG,

< 6 4

")

—GEF

e

—GEF

fo—t——
o
L
try
@

f C {01 f1 Cs

[N

Q.
~
o~

d e b,

—EGF

d, e i b ds
—GFE,

a, f.

= n
B B
> o
5
<
=
=
S

e Cs 4

b f d b, fi 4 a fi o
—GEF, -+EGF, —FEG

c e a e, e a, d e b

e, ¢ d, d, ¢ e, £ as  cs
—GFE, —FGE, —EFG

v booa la, b fi es ds b

e ¢ d €; (4 d| a, [ ﬁ
—GFE, —FGE, —~EFG

b a Vi b a d, b, e

b, f d, d, ﬂ b, ¢ as S
-->GEF, —»EGF, —FEG

¢y L a, e ¢ b, d, e

“Thesix symmetries present in the first two rows of this table correspond to the numerator parameter permutation BCD. The subsequent five sets of two rows
of symmetries in this table correspond to the numerator parameter permutations CBD, BDC, DBC, DCB, and CDB, respectively.
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APPENDIX A: THE SET OF GENERALIZED HYPERGEOMETRIC FUNCTIONS FOR THE 3/ AND 6/ COEFFICIENTS
A, Set of six 3 F2(1)'s for the 3/ coefficient

A= —(j +Jj2 — i) B= — (]l —m)), C= -+ m.), (Al)
D:j3—j2+ml+1y E;‘js-‘jl-mz”rl,
A= — (i +m) B= —{(ji+} —hh C= "‘(js-ma)’ (A2)
D:jz‘j3~m|+1, E:jz_j1+m3+1,
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4= —(j—my),
D:jx —ji+m,+ 1,

A= ‘(jl +jz —j;),
D=j—j,—m +1,

A= "‘(jl‘—ml)»

D:jz*js‘*‘ml'f'l,
and
A= “(j2+m2),

D:jl “jz“’mz‘*" 13

B = —’(_]3 +m3)’
Ezfl —f—m;+ i,

B = ‘-(j1+m1),
E= jj_jl+m2+ly

B= —(ji+j—rih
E=j—j—m+ 1,

B= _"(jJ—mJ)’
Ezjx —’j2+m3+ 1.

B. Set of three 4 ~3(1)’s for the 6/ coefficient

A=e—a—b,

E= —-a—b—c—d-—1,

A=d—-b—f
E=—-b—-c—e—f—1,
and

A=b-—a—e,

E=—a—-d—e—f—-1,

B=e¢e—c—-4d
F=e+f—a—d+1,

B=a—-b-—e
F=a+d—e—f+1,
B=b-d—-f
F=b+c—e—f+1,

C. Set of four 4, /;(1)’s for the 6/ coefficient

A=a+b+e+2,
E=a+b—-—c—d+1,

A=c+d+e+2,
E=c+d—-a-b+1,

A=a+c+f+2,

E=a+4+c—b—-d+1,
and
A=b+d+f+2,

E=b+4+d—a—c+1,

B=ag—-c—/
F=a+e—d-—f+1,
B=c—a-f
F=c+e-b—-f+1,

B=c—d—e,
F=a+f—d—e+1,

B=b—a-—e
F=b+f—c—e+1,

'K. Venkatesh, J. Math. Phys. 19, 2060 (1978).
T. Regge, Nuovo Cimento 10, 544 (1958).

*K. Srinivasa Rao, T.S. Santhanam, and K. Venkatesh, J. Math. Phys. 16,

1528 (1975).

“The subscript in the parameters indicate that the corresponding Regge
p P g Regg

symmetry is superposed on the tetrahedral symmetry. See T. Regge,
Nuovo Cimento 11, 116 (1959). For example,

{ds fs bﬁ}
as  es  Cs

means that the Regge symmetry RS is superposed on the tetrahedral

symmetry
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C= - (_/2 +j3 _jl)v

(A3)
C= — (}2 — mz)»

(A4)
C= — (/3 + m}),

(A5)
C= — (]2 +j3 —jl),

(A6)
C=f—a-c, D=f—b—-d,
G=e+f—b—c+]1, (AT)
C=d-—c—e D=a—c—f
G=a+d—b—c+]1, (A8)
C=c—a~-f D=c—d—e,
G=b+c—a—d+ 1. (A9)
C=b—-d—-/ D=e¢—c—d,

(A10)
G=b+e—c—f+1,
C=d-b-f D=e—a-5,

(All)
G=d+e—a—f+1,
C=a—-b—e D=f—b-—d,

(A12)
G=c+f—-b—e+1,
C=d—c—e D=f—a—c,

(Al13)

G=d+f—a—e+1.

{d f b}

a e ¢

°K. Srinivasa Rao and K. Venkatesh, Proc. Fifth Int. Colloquium on Group
Theoretical Methods in Physics, Montreal, 1976 (Academic, New York,
1977), p. 649.

°K. Venkatesh, J. Math. Phys. 19, 1973 (1978).

"The complete listing of symmetry relations and homomorphisms have

been given in K. Venkatesh, Ph.D. thesis, Mysore University, 1979,
unpublished.
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The most degenerate irreducible representations of the symplectic group

M. K. F. Wong
Fairfield University, Fairfield, Connecticut 06430

Hsin-Yang Yeh
Moorhead State University, Moorhead, Minnesota 56560

(Received 22 June 1979; accepted for publication 20 September 1979)

Matrix elements of the generators of the symplectic group Sp(21) have been obtained for the most
degenerate irreducible representations (m,,,0 ) and (r,,, ). These are the only two cases for n> 2
where the state labels according to the branching laws of Hegerfeldt give rise to an orthogonal set of
basic vectors.

1. INTRODUCTION

It has been almost thirty years since Gel’fand and Zetlin' obtained the matrix elements of the generators of U(n) and
O(n). However, the representation theory of the symplectic group for n > 2 has not yet been worked out so far. The reason is
that in the decomposition Sp(2#) D Sp(2n —2)-- DSp(2) there is a multiplicity problem for the labeling of the states. It was
shown by Hegerfeldt® that if one introduces the intermediate labels Myon 1> Mgy 1y s My, 1, together with the
“betweenness” conditions m; ., <m<my, 0= 12,20 — 1, j = 1,2,.., [11], m3* * ! >0,m,, all positive integers or
zero, then the states

ml,Zn m2,2n .......... mn,Zn
My 1 Mop, o ereeeee m,on 1
ml,2n—2 ---------- )"In_"zn_2
i(m)): ml.2n—3 """"" mn-1.2n73 , (11)

my, my,
myy My,
my,
Py,

will form a complete set of basis vectors.
However, it so happens that, for a general irreducible representation of Sp(2n), n > 2, the state |(m)) in (1.1) isnot a
“pure” state. For example, in Sp(6) the states

3 1 0 3 1 0
3 0 0 2 1 0
2 0 2 0
2 0 and 2 0 ’
2 2
2 2

are not orthogonal to each other. One must therefore choose a linear combination of these states in order to form an
orthonormal set of basis vectors. This is the multiplicity problem which is very difficult to solve.

In view of this difficulty, we have to be content to look at the multiplicity free case first. There are two irreducible
representations of Sp(2n) where an orthogonal set of basis vectors can be uniquely determined by (1.1). These are the most
degenerate irreducible representations of the first kind (m,, ,0) and of the second kind (##1,,). In this paper we obtain the
matrix elements of the generators of Sp(2n) for these two representations.

The most degenerate representations of the first kind (m,,,0) have been considered by Pajas and Raczka.* They used the
Laplace-Beltrami operator and obtained the basis function for this irreducible representation. However, they did not use the
Hergerfeldt decomposition. Consequently, they used a different set of labels, and the branching laws for these labels are not
explicitly stated. In our work, we use the infinitesimal method exclusively and obtain the matrix elements of our generators in
amuch simpler form than Pajas and Raczka, especially for the generators E e,+e, ,-Letusalsoadd thatinour work wehave
also obtained the basis function in the form of the normalized lowering (raising) operators operating on the highest (lowest)
weight.

In Sec. I1, we present the representations of Sp(2) and Sp(4). These two can be completely solved because of the
isomorphism between Sp(2) and SO(3) and Sp(4) and SO(5). In Secs. III and 1V, we discuss the representations (,,,0) and
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(m,,), respectively. In Sec. V, we discuss the general irreducible representations of Sp(2n). We show that the matrix elements
of the generators can be obtained between some special states which are orthogonal and uniquely determined by (1.1).

Il. REPRESENTATIONS OF Sp(2) AND Sp(4)

For the generators of Sp(2n), we follow the notation of
Perelomov and Popov,* first derived by Racah.’

[G:.G5]=65G4 — 865G, + %€ (55G 5 — 6:Gh),

@21
where
1 a>0,
= { 0 for a=0,
—1 a<o,
Gi= —e€GE, 22
Git =Gt (2.3

The indices range over 7, ..., 1,1,..,n

It is clear from the commutation relations (2.1) that G}
corresponds to the diagonal generator of the Cartan subalge-
bra H,. G (g < p) corresponds to the lowering generator
E_,.,» G4 (g <p) corresponds to the raising generator
E, ,, G corresponds to the lowering generator
E_,_,,G? , corresponds to the raising generator £, ,,
G, * corresponds to the lowering generator £ _ ,,, and
G?_, corresponds to the raising generator £,,.

Thus in Sp(2), there are three generators G |, G ', and
G . The commutation relations are

[GI, Gi'l=—267", 24
[GI, GL,]1=2G",, (2.9
[y, G ']=4G). 2.6)

The second order Casimir invariant is

C,=2G\G, +G" . \G['+G['G|=2m}, +4m,.
2.7

The dimension of the representation is m,, + 1.

We obtain the matrix elements of the generators as
follows:

<m12
My

mi, my,
<m”‘, IG“llm“> =2{m,, (m;; —m;, +1)]"% (2.9)

my,

(2.8)

1 —
G:l > =2my —m,,,

my,

<m12 G', m12> =2{(m, + 1)(my —m )2
LT my,
(2.10)
The connection between Sp(2) and SO(3) is as follows:
=2/, (2.11)
G '=2, 2.12)
G' =2, (2.13)
m,, =2, 2.149)
my, =m+j. 2.15)

For Sp(4) we use the fact that the Lie algebras of Sp(4)
and SO(5) are identical. Using Hecht’s notation,® we classify
SO(5) DSO(3)  SO(3) by the labels J,,, A, J, A, M,, M,
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with
J=J, —in—4im, 0<n<2(J, —A,,), (2.16)
A=A, +in—1im, 0<m<24,,. 2.17)
Then it is easily seen that
my, =2, (2.18)
my, =24, 2.19)
my=2A,+n=J,+A,, +A4—-J, (2.20)
my,=m=J,+A4, ~J—A, 2.21)
m,, =2L,
where L is the angular momentum in the direct product
Je AL, 2.22)
and
my, =M+1L, (2.23)
where M =M, + M, . Thus, e.g., the state
3 1
3 0
2
2

correspondstoJ,, =3, A, =4, /=4, A=4andL =1,
e, JoA =40l

M=% M,=}

or M,= -4, M,=21

-2

M=1,

Then all the matrix elements of the generators of Sp(4) can
be calculated using Hecht’s results and angular momentum
coupling schemes.

Note that Hecht’s decomposition is Sp(4) D Sp(2)
® Sp(2) and is different from the Hegerfeldt decomposition
(1.1). In the following two sections we use the Hegerfeldt
decomposition to obtain the most degenerate representa-
tions. Therefore, the results will be different from Hecht’s
when applied to Sp(4).

ii. THE MOST DEGENERATE IRREDUCIBLE
REPRESENTATIONS OF THE FIRST KIND

It is obvious that for the irreducible representation
(m,,,0), the states are specified by the labels m, ,, m, ,,_,,

..., m; , only. We shall denote this state by
mZn

Mon 1 (O)

m,
We now follow Mickelsson’ and denote the semimaximal
vector to be
m2n

0
jsmy = |- ©) G.1)
m;, _,

max
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The diagonal generators G | have the following matrix
elements:

. i i~ 1 {
G:|(m)) =( Y My — S My — mj,zi)
/< i<

i=1
X | (m)) =H,|(m)). (3.2)

There are two kinds of lowering (raising) operators. The first
one lowers (raises) ail the numbers from m,, _ , down tom,
by 1. The second one lowers (raises) all the numbers from
m,, _, down to m, by 1. Let us denote these operators by
L '"(R™ )and L] (R}), respectively, Then the commuta-
tion relations will be as follows:

[GLL, 1= ~L," [GLR™,]=R;", (3

[G:’L"'l]: ——Lnﬁl’ [G:’R"——I]ZR',RI’ (34)

Gy, L' (R, D]ism) =0, b=1.2,.,n -2,

3.5
(6" L, (R, )] sm) =0, (3.6)
[Gi.L7]=~L}, [GL.R.]=R,, 3.7
[GL.Li]=L}, [Gl.R.]=—R,, (3.8)
(G5, L7 (R7)]|sm) =0, (3.9)
[G" L LT (R )] sm) =0. (3.10)
It is easy to check that
L,'=G,', R".,=G",, @G.1
L'=G7, R!=G). (3.12)
Hence a general state |(m)) can be obtained as follows:
(M) =N (G )™ (@)™
X (G YT M, (3.13)

where M = maximal state, withm, =m,, fori=1,2,..,

n — | and N is the normalization constant of the generators.
The normalization constants are connected with the matrix
elements of the generators. Below we shall obtain both the
normalization constants and the matrix elements of the
generators.

It is clear that for the normalization constants we only
have to obtain the matrix elements of the generators G | and
G, ", acting on the semimaximal state. We show below how
the matrix elements of G | are obtained.

=X (a).

Now we use the commutation relation
[G!.G}]=H, —H,.

From (3.15) we obtain

X3 a) X a+1)=m,, —2m,,_, +2m,, , +2a.
(3.16)

(3.14)

(3.15)

We know, however,
X3 (my, y —my, 5, +1)=0. 3.17
Therefore, summing over (3.16) froma = 0tom,, _,
— m,, _,, we obtain
X*(0)

= (m2n~~1 — My, > + 1)(m2n —my, +m2n—2)'

(3.18)

By a similar procedure we obtain the matrix elements of
G "

n

ma, @) fm. ©
My, — 1 G Myp
My _2 my,_»

ax max

=2[(m2n~l —m2n—~2)(m2n — My, + 1)]V2'
(3.19)

Next we show how to obtain the matrix elements of the
generator G . First define

m,, (® m, ()
Moy My 1
My, 2 +a—1 e m,,_,+a
my, > +a—1 m,, ,+a
m, 4 My, 4
ax max
=X, (a). (3.20)
Then use the commutation relation
Gz \,G:~'1=H,—-H,_,. (3.21)

From (3.21), we obtain

X%(a+ 1)—X%(a) =2y, _, — My, —2my, _,

Define
m - 2a. 3.22
n,, m,, S . 3 22) p + 2"(; 4 ( )
: n ; umming over (3. roma=0toa=m,, _, —m,, .,
My, (O) G 1 m,, (O) g ( 2n -1 2n -2
. we obtain
m2n—2+a— mZn—2+a
m ta—1 m e X?(O)=(m2nal—mln—2+1)(m2n—m2ngl
-2 2n—2 + My, s — My, 4 ) (3.23)
ax max
Next we wish to find the matrix elements of G, _, acting on a general state, i.e.,
m,, 0) ms, Q)
my, my,
) CHI
my, . - m,,
o 2 (3.24)
mZn -3 1 m2!143
mZn -4 m2n -4
ax max
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First we use the lowering operator G, ";* ! on the state in (3.20) for & = 0, m,, _, — m,, _, times. We then have

n—1

my, 0)

my,

my, _» . 1

m _ LTI

2n — 3 2mz.. 2= My, 3 H [(a_m2";4)(m2n_2_a+1)]l/2

my, _4 a=rmy, +1

max )
mln (O)
my,

_ my, 2
XA(G M Ymyy_y —my, : (3.25)

My 2
m;, 4
max

Substituting (3.25) into (3.24) and commuting G | over to the right, we find that the value of (3.24) is

[my, 1 —my, 5 +1)(my, —my,  +my, “mzn~4)]l/2
my, 5 —1 my, -1
X H [(a-—mz,,_‘,)(mz,,,l-—a)]”z( H [(a—’m2n-4)(m2n72“a+l)]l/2)
a=m,, ; a=nrm,, +1
[(my, v —my, 5, +1)(my =y, My, —my, Yy, *m2n~4)]1/2

_ : (3.26)

[(may_2 —my, 4 )]
Comparing our results with those of Pajas and Raczka, we find that the matrix elements of H, and E , ,, can be made to
agree with each other provided one makes the following identification:

m—m=2m,, | —m,, —my, ,, (3.27)
I=L,—L, ,=my, —m,, ,. (3.28)
However, for the other generators, Pajas and Raczka obtained a very complicated result, whereas our results, in the form
of (3.26), is very simple.
IV. THE MOST DEGENERATE IRREDUCIBLE REPRESENTATIONS OF THE SECOND KIND

For the irreducible representations (#71,, ), the states are specified by the labels 72, 5, 7, 5, 1, M, 130 2Py _ 1253500
m, ;. We shall denote this state by

(’th ) my,

my, _, | 4.1

nm,
The lowest state is

(My,)  my,

0
0
0
To obtain the general state from the lowest state, we use the raising operators. There are two kinds of raising operators. The
first one, denoted by R '_ ,, raises m,, _, by 1, but does not change any other labels. The second one, denoted by R |~ , raises
both m,; _,, and m,; _; by 1. The commutation relations are
[GLR_,]=2R" . 4.2)
R, commutes with all the generators of the group Sp(2i — 2).
[GILR"']= —R|", (4.3)
[GiZLRI"']=R[™" (4.4)
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R~ ' commutes with all the generators of the group Sp(2i — 4). It is clear that

i—1_ vio P i
R;"" =G,", R"_,=G'_,, (4.5)
The ma}trix elements of the generators are completely determined if we can find those for G " .,andG7 "' Bya
procedure similar to the one used in the previous section, we find
my, mln
(my,) my,  —1 (my,) m
G." "o =20m —~ 12
"y, _, my, [ 21 My m2n~l+1)] y 4.6)
m2" mZn
(m2n ) My, (’hln ) mZn -1
My, 5 —1 my, 2
mz"*2—1 GZV‘ My, -2
mZn-d mz,,__4
= [(mzn —my,_, + 1)]]/2 [(2m2n - 2m2nV 1My, o, — ’"2,.44)]’/2. (47)
Then we have
(my,)  my,
m2n— 1
m " m m . ms, —
2 2 (2 2n 2 I'I [a(mz,,A‘; _a+1)]\/2)
my, 5 a=m 1
my, 4
(mzn) m2n
my, _ 1
mu, a—ma, | Mon -
X(G oy 2T el : (4.8)
Myn 2
mZn — 4
Now we wish to find
(mZn) m,, (m2n) mZn
my, My,
m2n42_1 G:fl my, _, | (4~9)
my, 1 — 1 My, _3
My g My, 4
Substituting (4.8) into (4.9) and commuting G* _, over to the right, we find that the value of (4.9) is
[(mZn — My, 2 + 1)(2m2n - 2m2n— v+ my, »— mln—4)]]/2
my, 2—1 ms, —1
X H [(a)(mznus*a*'l)]l/z( H [(a)(mZHAA—a+1)]l/Z)
a=m,, a=m,, ,+1
= [(mZn — My, 5, +1)2my, —2my, A my, , — mznﬂ;)]l/z
X My s (my g —myy s + D172 My (M —my, , + 1)1 (4.10)

V. SPECIAL CASES FOR THE MATRIX ELEMENTS OF THE GENERATORS FOR A GENERAL IRREDUCIBLE
REPRESENTATION

For a general irreducible representation of Sp(2#), n > 2, the states labeled by (1.1) are in general not orthogonal to each
other. There are, however, special cases, where two orthogonal states can be uniquely determined. For example, the highest
weight state is always uniquely determined. Therefore, the matrix elements of these generators which are primitive roots,
acting on the highest weight, can always be uniquely determined. Aside from the highest weight state, there are a few other
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states where the matrix elements of the generators can also be determined. We shall give some examples in Sp(2#) to illustrate
the point.
For the highest state weight we find, e.g.,

ml,Zn o mn.2n
My 2 o mn,Zn G"
—1 172
Mo, o m, _22n m, 5, —1 5 M )= (m, 3, —m,2,)""% (5.1
ml,Zn et mn —2.2n mn —1,2n l
max
My e My _ (5, Mg,
< i.2 d 7 n Gn__,, M) :2(mn,2n )]/2. (52)
m ., oMy, o mn,ln -1
For other special states, we find, e.g.,
m 1,20 e mn,Zn m1,2n o m, _ 1,2n mn,2n
m; s, o mn,Zn n ml,Zn M m, _ 1.2n mn,2n
—1
Mmoo M, g1 ~—1 " Myoe 0 My 50, My 15,1
M2y m, s, —1 Myse 0 My _ 50, My _ 12
max max
172
= [(mn— Ln—1 — M Y(My 00 — My 5 1+ 1)1 (5.3)
ml‘Zn o m, . 1.2n mn,2n ml,Zn e m, 1,2n mn,Zn
Mige = My oy Mg  ~ 1 G " [my, o m, 5, My,
max max
)
= 2[mn,2n — 1 (mn,ln - mn,2n -1 + 1)]] . (5'4)
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We use the boson realization to investigate the connection between integral transforms and
matrix elements of SO(2,1) in a continuous basis for both the principal and discrete series of
representations. Matrices in the SO(1,1) basis are shown to be related to an integral transform of

Mellin-Barnes type.

1. INTRODUCTION

Recently there has been considerable interest in the
study of a class of new realizations of the unitary irreducible
representations (UIR’s) of the three dimensional Lorentz
Group SO(2,1). In contrast to the canonical realizations of
Gel'fand’ ef al. and Bargmann?® in which the group acts tran-
sitively as a group of point transformations in a function
space, the group action in this construction,’* is an integral
transform,

T, f(x)= | K xx") f(x) dx’.

This realization which arouse out of the works of Mo-
shinsky,’ Wolf,* and coworkers on the role of generalized
canonical transforms in quantum mechanics turns out to be
equivalent to the boson representations used by Holman and
Biedenharn’ and others.*

The finite transformation matrices in a continuous non-
compact basis, in this construction, will appear naturaily as
the appropriate integral transform of the Kernel X (x,x").
The object of this short note is to show that a given subgroup
reduction corresponds, in general, to integral transform of a
specific type. The reduction in SO(1,1) basis, for example,
yields the continuous basis matrix elements of Barut and
Phillips’ as Mellin transforms of the kernel. The horocyclic
basis which will be treated elsewhere likewise corresponds to
Hankel transforms. Our method, which is similar to that of a
previous paper,® (I) is quite general and covers both the prin-
cipal and discrete” series of UIR’s of the group.

2. MELLIN TRANSFORM OF THE KERNEL AND MATRIX
ELEMENT

A. Principal series of representations:

Since for the principal series of UIR’s the SO(1,1) sub-
space is doubly degenerate, the Hilbert space, in the notation
of I, consists of pairs:

= (20).
f(n)
The action of an element of the group is then given by

Ts:(m f(r) = J-K (r,r';a)f(r’) rdr,

@.1)

(2.2)
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where the kernel K is a two by two matrix. The elements of X
for pure space rotations are given by*
K, =explilx — x") cot(a/2)1K,,
= SOSTVI2 o [G/2)x —x') coter/ 21K, (@),
7 sina/2
K, =explilx + x') cot{a/2}1K,,

[ exp[(l‘/z)(x + x’) COta/zl [e — i1rv/2H (2)(0)

sin{a/2)
— ™ H Na)], 2.3
where
v=2s, a=xx)"?*cscas2, x=r. 2.4
The normalized SO(1,1) bases consist of the vectors
it ~1/2
fo = 2/-1-2_: (;.#_,,2), €= 41, @.5)

which span a pair of mutually orthogonal subspaces H,
satisfying

(f:”f:) :665' 5(# ‘—ﬂ’) (26)
The finite transformation matrices
D@ =L Ty S 2.7)

in this basis can therefore be identified as the Mellin trans-
forms of K.

Following I this can be easily obtained by first expand-
ing K;in powers of x". The series thus obtained can be recast
in the form of an integral over the pure imaginary axis. Thus,
for example,

Ky(rr'a)

cosmv/2 1 f”" ( ix' a )—1—1/2
T e — dx{ — cot —
7 sina/2 2mi 2 2

— i

XTG4+ v/2+ 1UDC @ —v/2+ /)X, +X_),

(2.8)
where
X, = r(=v ( — ix csca)”?
r'z—v2+1/2)
X exp{(1/2)x cot /2]
XF(@zZ+v/2 4+ 1/2;v + 1; — ix csca). (2.9)
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The Taylor expansion of X , , shows that the two infinite
series can be identified as the sum of residues at
y= Fv/2 — 1/2 — n, n =0,1,2--- of the meromorphic
function

x(y) = (— ixcsea) ¥~ (cos’as2)*

F(y+v2+1/2)I' (y—v/2+1/2)
X
T'z+y+1)
z4+v/2+1/72, z—v/2+1/2
X £

;sin’a/2 |, (2.10)
z+y+1
which vanishes rapidly at | y|— co for Rey < 0. We therefore
obtain

X, 4+X_, = #f (D, @.11)
2mi ) i

and

Kl2

i i oo SN — 2 172
- —2 cosmv/2 (_L)—"f j dz dy (_g__) 12
T 2ﬂ' —dow o — i 2
X (—ix/2) 7?20 (@ +v/2+1/72)
Xz —=v/2+1/2F (y +v/2+1/2)
XI'(y —v/2 +1/2) sinm(z + p)F, (z.p),
where
F,(zp) =T (—z—y) (cosa/2)*~” (sina/2)**”
zZ4+v/241/2, z~v/241/2

(2.12)

X o F :sina/2 |.

z+y+1
2.13)

Similarly

3 i oo i oo N\ —z 12
K, = cscmrv/2 (L) J‘ dzdy(-— _11_)
i 27 —iee J —ico 2

l'x —y—12
X(-— 7) F+v2+1/2)I(z—v/2

+1/2) {F(y—f—v/Z +1/2)(y—v/2+1/2)

X [e™72 cosm(z + v/2) cosm(y + v/2) — ™?
Xcosm(z — v/2) cosz(y — v/2)) F (z,p)

2im? sinmv/2
- F,@y),
F+v2+1/9)r(z—v/2+1/2)
(2.14)
where
F,(zy) =TI+ y)cosa/2y~ (- sina/2) >~
—y+v/24172, —y—v/241/2
X »F, ;sina/2 |.
—z—yp+1
(2.15)

The corresponding integral representations for X,;, and K,
can be immediately written down by symmetry. The matrix
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elements D ;; which are simple linear combinations of the
Mellin transforms of K; can then be read off from these
equations.

B. Discrete representations:

Since for the discrete UIR’s, the procedure is quite simi-
lar to that discussed above we present only the outlines. In
this case the SO(1,1) bases consist of the single set of basis
vectors

fu@) = L -, (2.16)
w
and the kernel X is given by
ei‘rrk
K(xxha)= —
sina/2
Xexpf — (1/2)(x + x") cot/2] J,, ¢ (@)
2.17)

The desired integral representation for X of Mellin Barnes
type can be obtained easily by following the procedure as
outlines above. Thus,

eiﬂ/z(seCZa/z)k -~1/2 ( 1 )2

I (2k)sina/2 \ 27,

i foo , ix' -2 172
X dz' dz TCOW/Z

ix =122 ,
x(—z—cota/Z) Tk +2)rk+2),F

Kxx=0)= —

k+z k+7z2
1

cos’a/2 |

X ; (2.18)

2k

The continuous basis matrix elements can once again be read
off from this formula.
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Permutational symmetry of many particle states
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The symmetry of the Nth rank tensor basis for an irreducible representation of U(n) under the
operations of the permutation group has been investigated. It has been found that symmetrized
linear combinations of the elements of the matrix algebra of Sy lead to a tensor basis for U(n)
yielding the same matrix elements as the Gel’fand-Tsetlin basis for the generators E,,, , of U(n).
Based on these developments an algorithm has been developed for directly determining the
matrix elements of the generators E;;(j i 4-1) of U(n) using a pattern calculus.

1. INTRODUCTION

Over the past few years considerable effort has gone
into realizing basis states spanning the irreducible represen-
tations (IR’s) of U(n).'-® The study of many-particle systems
using these basis states leads naturally to the consideration
of transformations induced in them by the generators of the
permutation group .S, on the particle coordinates. In view of
this, there have been attempts to realize these states by ap-
plying Young operators of S, ”*® to reducible tensor products
of the basis orbitals spanning the fundamental representa-
tion of U(n). However, the nonhermiticity of Young idem-
potents used, led to nonorthogonality of the generated bases
as pointed out by Baird and Biedenharn” and Patterson and
Harter.® This nonorthogonality problem prevented an ex-
tensive application of such a method to many-particle states
till quite recently. An alternative approach based on the gen-
eralized hook concept was used by Biedenharn and Ciftan’
and Ciftan® to realize explicit forms for the semimaximal
states of U(n). This approach proved relatively easier to use
than the one based exclusively on the process of lowering
from the highest weight state (HWS), developed by Baird
and Biedenharn'? and Nagel and Moshinsky.’

A further alternative to the use of the semimaximal

2. ATENSOR BASIS SET FOR THE IR’S OF U(n)

states approach was suggested recently by Lezuo.” Using
essentially idempotent elements of the associative algebra of
Sy, he was able to realize a projected tensor basis for SU(3).
Such a basis was found to differ at most by a phase factor
from the corresponding Gel'fand basis.*® In a more recent
note Patterson and Harter®'® were able to demonstrate that
such considerations could be generalized to U(n). However,
to the best of our knowledge, an explicit determination of the
normalization and other factors involved in such a projected
tensor basis state has not been carried out.

In the recent note we have used nonstandard irreduci-
ble representations'” to obtain a set of operators defining a
matrix algebra of S,'"'? and applied them to an N th rank
tensor product of single particle basis orbitals to obtain a
properly normalized basis set for the IR’s of U(n). The pro-
cedure for obtaining these tensor basis sets is outlined in Sec.
2. Using these basis sets it has also been shown that the ma-
trix elements of the elementary generators E; _,; of U(n)
agree with those resulting from the use of Gel’fand bases.” "
In Sec. 3, we have developed a pattern calculus for calcula-
tion of matrix elements of nonelementary generators £ ;
(j#i + 1) using a parallelism with the work of Holman and
Biedenharn.'? A brief discussion of the method is presented

| in Sec. 4.

Consider an N-particle system described by an ordered set of orthonormal single particle orbitals, (¢, | i = 1,2,...,n}.
These orbitals span the fundamental representation space ¥, of U(n). A reducible N th rank tensor basis set can be generated

for U(n) by using these as,

V@ Nt [V NyenN)) = |60 )Y |6, )V
where

¢n >N"’

NNy N, 30, 3 N, =N.

i=1

(1

A standard (Y oung—Yamanouchi) realization of basis states of an IR of the permutation group S now follows if we apply the

operators,'?

[m]

[m] N 2 {m]
o =\ NT Sy [pip

PeS,

to a tensor product of Eq. (1). In Eq. (2) [m] = [m,,,m,,,...m

2)

0 | Subjectot m, >m,, >--»m,, >0and £_ ,m,, = N,

represents a specific IR of S of dimensionality £, [P ]! is the (7,5) matrix element for the Young orthogonal representa-
tion matrix for PeS, . For a fixed index » we can generate a set of nonzero states,

| rs;(Nl !N?. r--'an)>[m] = w[r;n] I(Nl !NZ !"',Nn)>’
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which, if chosen linearly independent, can provide a basis for the IR[m] of U(n)7 810.11 This set can be put into a one to one
correspondence with Gel'fand bases ([m]) of U(n) if we identify N, as N, = Z;_ ,m;, — Z/_1m,,_,, where the m,, satisfy the
betweenness condition m; >m;, _, >m; . ,fori,j=1,2,...n, subject tom; = 0ifj j > i. The main problem with the procedure
is choice of a linearly independent subset of {|rs; (V,,...,V,))!"™}. The chief source of lack of linear independnece is that the
Young-Yamanouchi representation of S, '''? used in deﬁmng o!™ is sequence adapted to the chain of subgroups Sy DSy _,

S5..DS), whereas the monomial tensor products of Eq. (1) are invariant under all PeS,, ® Sy, ® - ®Sy . As pointed out

by Lezuo,” this leads to the result,
[7s; (NV,N3...,N, )™ = (constant) |rs';(N,,Np,...,N, )"
if ! and ¢ "' are any two standard Young tableaux (SYT’s),'” related to each other through an elementary transposition of

the set defined by «/ = {P|Pell; _, ® S, }. A way out of this difficulty is to define a normalized linear combination of the
operators of Eq. (2),

lm) ] gy [ 1
w’fy(lm) [ N “Tn)] 2 a; "o, (3)

which is right invariant (@, (), /P = o,|7), ) under all Pe 7. The coefficients a!™’ are determined solely from the symmetry
requirement and N {77} | = [Z,(a!")? ]2 At this juncture it is necessary to indicate which ™! are to be used in the linear
combination of Eq. (3). Patterson and Harter®” have shown that the SYTz [ defining @™ could be any of the tableaux in
which the numbers 7 in the Weyl tableau are replaced by numbers p,_, + 1, Pi1 +2...p;, Wherep, =3 m,, s0as to
produce an SYT. The tableaux ¢ |™! corresponding ! of Eq. (3) are therefore determined by the Weyl pattern corresponding
to a basis state of [m]. For convenience the Weyl tableau, and the corresponding Gel’fand pattern are shown below:

m ! [
Mn- 0 - : - ’ ©oonn My —= M-t —> My
11t . . -1
my _mn-1n-1 n...n
: e Ma2 —» M2n—~ Mip—=
22, . . .2 n...n
I[(m)]) = =
i
1
|
|
m,m e
M an....n

The index [(m)] is used to identify the Weyl tableau (m) of the Ir[m] of U(n). For a fixed index r this choice of w!77,,, | permits us
to obtain a linearly independent basis set,

HLOm T (NN N

spanning the IR[m] of U(n), using a subset of tensor products of Eq. (1) in which no two elements are related to each other
through a PeS,.

Transformations among the elements of the above basis set can be induced using the generators E; (,j=1.2,..n)of
U(n). These E,; can be defined using the matrix elements e, (a) (i, j = 1,2,...,m;a = 1,2,...,N) as,®®

N
E, = Y eia), @
=1
where e, ()¢, (B) = 8 8,50:(a) so that,
elj (a)el\m (B) — Yk 6(1Be1m (a) (5)
The definition of E;, in Eq. (4) and the relation given in Eq. (5) lead to the result
[E) Ey] = —8yEy , )

sothat £, i,j =1, 2 ,n may be treated as the generators of U(n). Since the E; are totally symmetric in particle coordinates
they commute with o/} ;» and we obtain

E, ol | (N\,Ny,.. ,N,)) = ol ](¢ R N A " 20 X )

where(@,¢6 " ) =3 "¢ fé.¢"~* ' isasymmetrized sum of monomials with oned, and N; — 1 4,’s. Since w[7,, | is right
symmetric w1th respect to all permutations of these N, coordinates

E,/[(m)] ](N,,...,N,-,..., j""’Nn)> =N/[(m)1¢11v'¢z ¢:¢; [¢:, (8)

In Eq. (8) we have, for notational convenience, replaced @!7t)y, by [(m)]. The orthonormality of basis orbitals ¢, leads to the
result that the only nonzero matrix elements of £, are
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([0 s WiV, +1ecs Ny =Ly N | E, [[0m)LV eeisNireoiN N, -

Applying E f = E, to the bra vector in this matrix element we obtain a weighting factor N, 41 in place of N;asinEq.(8).In
order to resolve this ambiguity we use the geometric mean [(N, +1) N, 1" to replace N, in Eq. (8), if i#/. Using this
replacement we express Eq. (8) as,

Ey | MWV 1eaNoeioN V)Y = [V A D N T2 [ I8 Y 8 Vi b V)

= [V, +D N, 1" [(Z)l [P | L)WV e Ns 4L Ny =L, N . 9)

We now describe a method of constructing the operators w7, ;==[(m)] of Eq. (3) and the states |[(m)];(V,,...,N,)}. We
first concentrate on U(2) and then generalize the procedure to U(n). Using these basis states and Eq. (9) we will then determine

the matrix elements of E; _, ; . Consider the Gel'fand pattern and the corresponding Weyl tableau for a state belonging to the
IR[m ,,m,;) of U(2):

m,, My, [ My T My T
I £ K K TR £ I & & S | (10)
= j——— M3y e
AL
222 . 22

For such a state the basic tensor product of Eq. (1) is,

](NI’N2)>E¢?'I ¢12v‘! (1
where N, =m;, N, =m, + my; —my, Ny + N, = m, + m,, = N. This tensor product is invariant under all Pe S,
& .Sy, . This requires that we define [(m)] as in Eq. (3) which is right invariant under ail these permutations. Before taking up
this general case, consider a specific example of |(3,3)) = ¢ ;¢ 3 for the IR[4,2] of U(2). Consider the Gel’fand state

l 4 2 >_ I 1 1 2

3 2 2

From what has been said above regarding the ! to be considered in the linear combination of Eq. (3), the relevant indices s
here correspond to the lattice permutation symbols: 111122, 111212, 111221, to be written as [(1>)(1)(2%)], [(1*)(2)(1)(2)],
[(1*)(2%)(1)]. The parentheses have been introduced with a definite aim in mind. These indicate symmetrization over the
particles whose row numbers are contained within the same parentheses. Obviously then, the symbols in which no parentheses
contain two or more distinct row numbers denote single SYT’s, Those symbols for which this is not the case are, in general,
linear combinations of several SYT’s, the linear combinations being totally symmetric with respect to permutations of
particles within each of the parentheses. For the U(2) state under consideration, then, we write [(1>)(12%)] for [(m)]l=wl(.,,
The symbol [(1*)(12%)], therefore, denotes an operator totally symmetric in: (a) the first three particles, all in the first row of
the SYT’s and (b) the last three particles, one of which is in the first row and the other two in the second row. Using the
transpositions (4,5), (5,6) on the right and the Y-Y orthogonal representation matrices, we find that

[(1%)(129)] = (10/3)2{(4.5) " [(1IHDH)] + G4 IHXDH)] + @.3) (DYDY (12)

is normalized and right invariant under Pe S; & S;CS,. By combining the last two terms on the right of Eq. (12) and
normalizing the result we obtain a form which proves convenient for later generalization. We reexpress Eq. (12) as,

(1931291 = V16 [1)M@I] + V576 [(1)Q)1D)], (13)

where each operator combination on the right can be readily verified to be right symmetric under (5,6) in addition to being
symmetric under interchange of the first three particles.
As a generalization of Eq. (13) to the case of |(¥|,N,)) of Eq. (11), we first define a normalized operator combination,

(s meyman ] | (o = M)y —myy +1) V2 my,—my, ~1ym,,
[ mam) = | ezl = e 139 1y 2]

1

[ Om2 + Doy ]/2[(1'"--(2)(1"'“*""-2"’“”‘)] (14
(myy 4+ D(myy + my — m,y,)

and find that it tallies with Eq. (13)form, =4, m,, =2, m,; = 3.
For low values of m,,, m,, m,, it can be directly verified that the expansion given in Eq. (14) is right invariant under all
Pe S, ®S,,. Assuming that each term on the right-hand side of Eq. (14) is normalized and right invariant under permuta-

tions of the last N, —1 particles, we can demonstrate that the linear combination is additionally right invariant under the

transposition (N, +1,N, +2). In order to demonstrate this we decompose each operator combination on the right of Eq. (14)
into further pairs of terms, each of which is totally symmetric under permutations of the last N, — 2 particles. We note, in this
process, that Eq. (14) is valid for the further decomposition of [(1™+}(1)(1™:~ ™ ~!2™=)] omitting the first m,, +1 boxes in
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the first row, instead of the first m,, as in the original decomposition. Hence we have to replace m,, by m,, +1 wherever it
occurs in the coefficients of Eq. (14) during the further decomposition. Similarly, the decomposition of

(@™ ) (2)(1m: — ™27 =1)] requires that we omit the first m,, boxes in the first row and the first box in the second row while
doing the “city-block distance”'? counting required for the calculation of the coefficients of Eq. (14). This means that the first
column of the SYT’s has to be omitted in obtaining the coefficients of the further decomposition of the second term in Eq. (14).
Therefore, we replace m,,, m,,, m,, by m,, — 1, m, — 1, m,, — 1, respectively, wherever they occur in the coefficients of this
expansion. With these considerations in mind we obtain

[ yime =2
— (mp, —mYmy, —mp,+ 1) P2 (myy,—m —1)m —my+2) |12 1YL = e =2
{(m11+1)(m12+m22_m11) ] [{ (my, +2)(my + my —my; —1) ] L XIXIN ( )
Mmyy(my, +1) 1/2 17 (D)) 17~ v —19mas —1 my(my, +1) 172
+[(m1,+2)(m12+m22—m,,—1) ] I YN )]]+[(m11+1)(m12+m22“m11)

X[[ (mlz _ mll)(mll — My + 1) ]Vz[(}m,,)(z)(l)(lm”~m.. ----12m“~!)]

my(myy 4+ my —my —1)
(my; — Dm,, Y2 Py s A —2
N [ my(myy + my —my; —1) ] Lam-@xaa 2 )]] as

We find that the first and the last operator combinations on the right-hand side of Eq. (15) are already symmetric under the
transposition (¥, + 1,N, + 2). Also noting that each SYT of the sets, defining the two remaining operator combinations, has a
fixed city block distance between the particles N, + 1 and N, + 2, we can verify that the combination of these two operator
combinations is also right invariant under (¥, + LN, 4 2). A detailed verification of this result will be given later for the
general IR of U(n).

Using arguments quite similar to the above we can also obtain an alternative to Eq. (14) as,

[(17 Y1 = ey = { (my —my)m+1) o }]/z[(l"*-')(lm" —m = 1amay(])]
1

(myy —may + 1)(my; + my, —
+ { (my — my + Dmy,
(M, — myy +1)(my, + myy — myy)
which can also be verified to be right invariant under all P S, ® S, . In proving this we require further right [as against the
left in Eq. (14)] decomposition of each term on the right of Eq. (16). It is evident that in this case we have to replace m,, by
m,, —1 and m,, by m,, — 1 respectively in applying Eq. (16) for the further decompositions of [(17 )(1™+~ "™+ ~12")(1)]
and [(1™ )1 = me2ma=1y2) ]

We note in Egs. (14) and (16) that the (1™) part of [(1™+)(1™*~ ™ '2"™)] is not affected in the decompositions. This is 2
general result. Each of the parentheses in [(m)] can be independently and successively decomposed. The coefficients of such
decomposition depend only on the m;,’s involved in the exponents of 1,2,...,etc. in the parenthesis. For generalizing the above
considerations to the case of U(n) we identify the operator [(m)] corresponding to the general U(n) Gel’fand state,

]”2[(1'"-‘)<1f"~--""-2'""*’)(2)], (16)

my, m2n e mnn
L P Mon m, 1.
my,m;,
my,
as
[(lm. (1T .zmu)m(lmn TG e T 1_"[’".-,-).“(1"'1.. —my, nmn'".m)]‘ 17)

The ith parenthesis in [(m)] corresponds to the total symmetrization with respect to all particles occupying the orbital ¢,.
Since the Gel’fand states of any IR of U(n) are sequence adapted to the chain of subgroups U(#) DU(n — 1) D--DU(1), we
will consider the decomposition of the nth parenthesis of Eq. (17). This requires the determination of g, in the
decomposition

(1 my, - my, 1."k My — Py, lu'nmun) = Z ak ('l)(k )(1’"1/. — My l"_k My — My, — 1 ."nm"")' (1 8)

k=1
As for U(2) we first define g, as
n o —itk 172
a " = { e~ ey 2J 1) Ay i as)
mi_,(m,_, —my,_, —j+k)
subject to m,,, _, = 0. Substituting n = 2 and k = 1 in Eq. (19) reproduces the coefficient of [(1™)(1)(1">~ ™ ~'2™)] in
the decomposition of [(1™)(1™*~"™2™)] in Eq. (14), just as substituting n = 2, k = 2 reproduces that of
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((1™)(2)(1™ >~ ™2™ ~")]. The verification that the right side of Eq. (18) is properly symmetrized is quite laborious. As an
illustration we will show that the coefficients for k = 1,2 yield the correct symmetrization. The procedure is identical for all
other pairs of k values. From Eq. (18) and Eq. (19) we have after omitting all the first n —1 parentheses for the U(n) state as in
writing Eq. (18), the result

::1(mkn —m,, _k+1)
n’zzl(mknvl —my, ——k+

In;_n,, —m,, | —k+2 12
+ [ mk l( 3 2 1 ) ] (2)(1m,”—— "y, ,2m2,,4m2,, y—1 -"nm,,,,) + ."} )
i 1My _y —my,  —k+2)
(20)

In the further decomposition of any of the operator combinations (j)(---j™ =™ *7'..) on the right-hand side of Eq. (20),
reasoning similar to that given in the case of U(2) shows that m,, _, has to be replaced by m 1 +1ifj%n, and allm; ’s and

m,, _, ’s have to be decreased by 1 (keeping m,,, _, = 0)ifj = n. With these modifications we obtain

TP 1yMa, — My, m,, - 12 my, —m my,, —
(lm'" 2 " g ,..)=(N")1/2{[ 1) ] (l)(l n n 1‘12 20— M2y |“_n'"".,)

(1'"1" —my, 12’"11. — My, 1_‘_n"'m,)

=(N ),],2[[ HZ:l(mkn —my, _k+1) }I/Z(N __1),1/2 [[ H;:l(mjn — My, __j) ]1/2

=1y —my, —k+1) ;i my, ., —my,_y —))
_,(m, —my, , —j42) }1/2{ (my, , —m,y, , +1) }1/2
nw_ (m, , —m,,_, —j+2) (my, , —my, , +2)
i (my —my,  —k+2) ]1/2
iy, oy —my,y —k+2)
X(N, —1)'2 H I_ (my, —my, _, —j+1) ]1/2
n?:l(mjnfl —my,_; —j+1)
—- — 1/2
[("’(j;;‘_l '_";;;‘_t )” ] @)™ T T
+[ H;':l(mjn —my,  —j+1)
nlj"!=l(mjn—1 —my, .y —Jj+1)

SCIY(I)(1™ = e 4720 = sy [

X (™ e g ey | {

1/2
] @)1~ g Ry ] ] 1)

As for the case of U(2), the first and the last operator combinations are already symmetric under (¥, , +1,N, _, +2). We
have only to show that the combination of the middle two terms on the right of Eq. (21) is symmetric with respect to

NV, + LN, _; +2). All the operators in Eq. (21) are assumed to be totally symmetric with respect to permutations of the
last N, — 2 particles. [Strictly speaking the various parentheses in Eq. (21) are not operators by themselves. These parentheses
taken along with the other n — 1 parentheses corresponding toé,, 7 = 1,2,...,n — 1, are the operators we refer to.] We find that
all the SYT’s present in the second and the third operators on the right of Eq. (21) have the same “city-block distance”'® of
(m,, _, —m,, _, +1)between the (N, _, +1)and (N, _, + 2) particles. Applying on the right the transposition

(N, _ +1,N, _, +2) toeither side of Eq. (21), and using Young orthogonal matrices'!-'* for this transposition we find that
the coefficient of (1)(2)(1™ ™ ™ * =127~ ™2 v = L.y becomes the sum of two contributions. The diagonal contribution
comes from the second operator in Eq. (21) and off-diagonal contribution from the third. A combination of these two yields

Hz:l(mkn——mln—l _k+1) Hz:l(mkn_mbr—l —k+2) }1/2
Geamy, oy —my, o —k+) I (my, .y —my, | —k+2)

[V.V, =) ]*”2{

m,,_, —my ; +1 172
X(my, _, —my, +1)'l{_[( 2! e ) }
(mln—l — My, +2)
n {(mln o =My My, —my, o 42 (my,  —my, _ —1) }1/2} . 22)
(m2n~1 ~m1n-—l)
Simplification of the expression in (22) leads to the same expression as the coefficient of the second operator, i.e.,
(D)™ e T e e = L™y on the right of Eq. (21). Similar verification can be carried out for the coefficient of

the third operator in Eq. (21).
A right decomposition of the operator on the left-hand side of Eq. (18) is also possible, as in

(l”’n"“n 12""2.‘—”’2:‘ 1'.‘kmﬁi7mkp l'..imii)z 2 bk(i)(_._kmlu“mh 1*}".)(’(), (23)

K=

where
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b = (— 1)1/2[ Iy_, (mjffvl —my +k—J)
ﬂ'}’: (m; —my; + k—J

The verification of the right invariance of the operator of Eq. (23), with respect to Pell; _ , ® Sy, follows on the same lines as
that for left decomposition given in Egs. (18)—(22). For further decomposition [on the left asin Eq. (18) or on the right as in Eq.
(23)] of the operator (-4~ ™ * ™ ..i™)( j), we replace m;, by m; —1. Equation (23) is an alternative normalized operator
combination right invariant under Pefl} _, ® Sy,, the symmetrization affected being over W, particles (i = 1,2,...,n)in¢,. It
should be emphasized that Eq. (18) with » replaced by / and Eq. (23) are valid for decompositions of the ith parentheses,
corresponding to symmetrization over the N, particlesin ¢,, i = 1,2,...,n.

The operators [(mn)] to be written down in terms of single SYT’s by using Eq. (18) or (23), or both, are complete because
one, and only one, [(m)] is associated with a Gel’fand pattern, and orthogonal because the symmetrization in each is done over
distinct combinations of boxes in the 1st, 2nd, ....etc. rows of the SYT’s as dictated by the Weyl tableau corresponding to the
Gel’fand pattern. Further [(m)] are properly normalized on the assumption that the SYT’s are. We have, therefore, obtained a
complete set of operators which, acting on a subset of monomial tensor products of Eq. (1), in which no two elements are
permutationally related, yield a complete orthonormal basis set for IR[m] of U(#),

172 ,
] v, )2, m;_ =0. (24)

IV Ny, N EN,- =N, i (m; —m;_)=N,, my>m;_, >m; ] 25)
~

We now proceed to obtain the matrix elements of the elementary generators E; _, ; between the basis states of the set (25),
making use of Eq. (9). The matrix element in Gel'fand and our notation is,

nn
m“ . mkl . . . . . . My E|1.
-7t

m“_1 .. mkl-1+1 . N v - My
My
- m
My nh
. - mii
My Myi
m“_1 . . mki_1 - . « Mt
My

= Mi‘:‘hi :([(m')] ',(N"....Niq +1,Ni"1""0Nn)IE'_“ l [(m)];(Np"'aNl"l: Ni,.,.Nn)),

(26)

where
[om)] = [(am )o@ 1 i 2 ™ T (T e T e, ] 27
[(m/)) - [(lm")n-(lm" y — my; z__'km“ ) — My z+lm)(1m.,»—m,, ‘...km‘i—m"’ 'Al...)...]_ (28)

We have not written the parentheses which are identical for [(n)] and [(m")] in Eqgs. (27), (28). From an inspection of Egs. (27)
and (28), we find that [()] has an extra degree of symmetrization in the ith parenthesis in the k th row, whereas [(m ")] contains
an extra degree of symmetrization in the (i — 1)th parenthesis in the k th row. Apart from this the symmetrization is identical
for [(m)] and [(m")] for other parentheses, i.e., for all ¢;, j1, 7 — 1. This dictates that we use right decomposition [Eq. (23)] of
the (/ — 1)th parenthesis of [(m’)] bringing out a (k ) and matching with the (7 — 1)th parenthesis of [()]. Similarly, left
decomposition [cf. Eq. (18)] of the ith parenthesis of [(7)] again bringing out (k) matches the ith parentheses of [(m)] and
{(m")]. The operator combinations are now matched on both sides of E, _ 1i- Action of E; _, ; gives a factor of

[V, _, + DN, ]'"? according to Eq. (9), and matches the monomial products in front of the operators (i.e., identity is the
matching permutation for monomial products). The overlap of matched operators is unity and the matrix element of Eq. (26)
becomes

Mll\ll = [(N:e] + I)Ni]l/zak(obk(‘lvu
From Eq. (19) and (24) we obtain
Mk _( 1)]/2{ nj':;ll(mji72 — My, —]+k-—1)n‘;=1 mji — My ‘.]+k) }1/2 (29)
i1 =\ — P . T P )
Hj:ll(mji—) — My "]+k—1)nj=1(mﬁ—1 —my_ —j+k)
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The matrix element of Eq. (29) is identical with the one obtained by Baird and Biedenharn? and Moshinsky and Nagel.> The
matrix element of E;; | can be similarly obtained.

3. APATTERN CALCULUS FOR THE DECOMPOSITION COEFFICIENTS: MATRIX ELEMENTS OF £,

The simplicity of the forms of left and right decompositions of Egs. (18) and (23) enables us to determine the relevant
coefficients by adapting the pattern calculus developed by Holman and Biedenharn'? in their study of the tensor operators of
U(n). The advantage of the method is that it also enables a ready determination of the matrix elements of general E; of U(n).
We outline the method in what follows.

Consider the decomposition

(1'"1; My 1".k My — My 1'_.1"".'.')___>(,c )(1'"1, — My 1."k my—my; o —1 ___l'"'ii)
of the ith parentheses in [(n)] of U(n) (n>{). The coefficient a, *° of Eq. (19) can be simply generated using the following rules:

(1) Consider the ith and (; —1)th rows of the Gel'fand tableau associated with [(m)], adding an additional node of weight

m;; _, = 0to the ({ —1)th row. Treat the (k,/ —1) node with weight m,; , as a reference node (a center).
(2) Join the center to all the nodes in the ith and (i —1)th rows by lines, assigning weights k& — j for 1<j<k andj — k for

k <j<i to the line between the (k,i) or (k,i — 1) node and the center, as indicated in the pattern (A).

(A)

K-2

R Wl e

(i-1) th row

(3) Treat each of the lines connecting the center ot the ith row nodes as contributing a factor (m; —m,, , —j+k )2 for
1<j<k, and (m,; , — m, +j — k)"*for k <j<i. Treat each of the lines connecting the center to the (i — 1) row nodes as
contributing a factor (m;, _, —m,,_, —j+ k)" *for1<j<k,and (m,; , —m_, +j— k)'*fork <j<1. The product of
all the lines of the diagram is a, ” except for an additional overall factor, common to all al((", of (N,)'"%.

For the right decomposition of Eq. (23) we proceed similarly to a pattern for b, @, except that the center now is in the top
row and lines joining the center to the ith row nodes now contribute inverse square root factors, and those joining the center to

(i —1) row nodes square root factors. This is indicated in the pattern (B).

(B)

Using such diagrammatic representations it is possible to considerably simplify the determination of the matrix elements
of E; of U(n). As a means of obtaining general rules consider the matrix element,
<[(1m., +1 )(lm., - m, .2m,,)(1m,, — My, —1 2m,, —_ m,,3m,3)]¢ IIV. +1 ¢ IZV, 13V, —1 |E13|
X [y =gy g = 3 |6 g g )
of U(3). Using E,; = [E,,,E,;}, we find that the only intermediate state required for the nonzero matrix element of E,,F,, is
| [y (U= mes hgmay(gmes = e =1 gme mma3may g Mg et g 01

As in Eq. (29), the matrix element of E,; between this bra and the initial ket vector requires a right decomposition
(17 e b gmay_ (1 = mamay(1), of the former and a left decomposition, (172~ ™27 T M3
—s(1)(17m> — a1 me —mau3mey of the latter. Noting that for the intermediate state m,, is replaced by m, +1 and hence

644 J. Math. Phys., Vol. 21, No. 4, April 1980 C.R. Sarma and G.G. Sahasrabudhe 644



appropriately increasing/decreasing the line weights over those given by rule (2) above, we obtain the E,; part of the £,E,,
matrix element as

3
( ( row 2 @?—\2—»
row 3 / e
Y2 L x

1 2
) 0 4 1\ \ Mmp1=0 ¢ - (30)
2 1—e m32=0
12/ ]

Similarly the E,, part is obtained as

[ row 1
row 2 \ / \
1 . 3D
1 &—1——* m21=0 m1=0

The second pattern in (31) is introduced because the right decomposition factor for (1™ *')—(1,, Y1) is (m +1)"?,
and so it is necessary to artificially introduce a zeroth row to the Gel’fand pattern. Moreover we have omitted the factors
[N:.(¥,_, +1) ]"? since they cancel with corresponding factors due to the action of E; _, ; at every stage. A combination of
(30), (31) gives the E,E,; part of the matrix element of E,; as

1 . (32)

A similar procedure for E,,E |, through the intermediate state
' (lm.. +1 )(lm,, —m,, —1 2m“)(1m.J — m,,2m,, —_ m,;3m,,); ¢ IIV, +1 ¢ év, —1 ¢ gv,)

s

leads to
\ /. 2 ]
<|Bas Epgf>=4 Q)7 pxdo ok, X ‘\ - €D
1-*/ 1

By subtracting the RHS of Eq. (33) from that of Eq. (32) we find that all lines have the same weight except those defining a loop
between the pair of centers in the “combined” second pattern. The difference between these loops is

(my; — m,, +1) — (m;, — my,) = 1. Thus in the diagrammatic equivalent of the matrix element of E|,, we can omit the loop
between the centers in the combined pattern and obtain,

<[(1m“ +l)(1mu —M..2mn)(1mu—m.,—l QM —mz.3mn)]; ¢fl, +l¢ ZN) 13\’, —~1 ,EIBI
X [(lm..)(lm., ~m, 12’"2:)(1’"1: — Muama — ’"n3mu)]; ¢ IIV.¢2x¢ 13V;)
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— { (my3 — mp)(myy — mys +1)(my, — may +2)(my, — my, +1) ]’/2
(M, — my, +1)(my; — my, +2)

\ | / 2 RN
- ogéi/ X %Z& X 1\- (34)

Before attempting to obtain a generalized set of rules determining general E,; matrix elements, let us consider one more matrix
element,

([QUre 1y = e =gty =g —ma SU 3T | g g Nag L ||
X [(1M. -)(lmn - m, '2"'“)(1"'” —my3)maa — '"113"1;\.\)]; ¢ 1]\’.¢ 12V.¢ 13\’,)

Proceeding exactly as above, with appropriate choice for the intermediate states, we obtain the E|,E,, and E,;E,, matrix

elements as
|E12 E23] \1 8/ \;’00_/?21 Q1 (35)
< > = X X ’
12 E23 o . }#1_\ \

\1 \0 1f Y0-_(?‘@‘\ C‘K

<|E23 Eq2i>= X g X 1 : (36)
| r—&fﬂ—« = \

Again, in subtracting the RHS of Eq. (36) from that of Eq. (35), we note that the only difference in the patterns is the loop
connecting the centers (which this time are m,, and m,,). Subtraction of the loops gives the algebraic factor
(m;, —m,,) — (m;, — m,; +1) = —1. Hence, we have,

([(1m., +I)(1m.,——m.. —1 2m,, +1)(1m,,—m.,2m,,—m,,—l 3m,,)]; ¢11V. +l¢9’,¢ 3,—[ lEl3l
X [(Em ) (1 = e gm(1me = e~ a3 | g Fag 5

NG LAY LS
A [T TN

= (1)

=(-1 [ (my3 — myy +1)(my3 — mp)(my, — my; +1) ]1/2[ (myy — my)(myy +1)
(myz — myy +1)(my, +1) (my; — my)(myy +1)
=(-1) { (my3 — myy +1) My —~ mp)(my, — myy +1)my, — myy) }1/2_
(myy — my)(my, — my, +1)

172
] (myy +1)72

(37
We find that the results given in Egs. (34), (37) coincide with those given by Moshinsky,’ even including the phase factor. This
permits us to propose a general set of rules for determining the matrix elements of E;; (i <)) of U(n). E;; connects a Gel’fand

state G with another Gel’fand state G’ which hasits k th (1<k <7 or n>k>j) rows identical with that of G. Each of the pth rows
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of G for i<p</ differs from the corresponding row of G in that the k,, th entry in the pth row G ' is the &, th entry in the pth row
of G increased by unity.

(1) For E;; there are two simple patterns (SP’s) and (j — i/ — 1) combined pattern (CP’s).

(2) One of the SP’s corresponds to left decomposition coefficient for taking out &, _, on the left from 4, parentheses in G.
This is drawn as indicated in pattern (A) of Sec. 3 (rule 2). The second SP corresponds to the right decomposition coefficient
for taking out &, on the right from ¢, parenthesis of G'. This is again drawn as indicated in pattern (B) of Sec. 3. The line-
weights are changed suitably to accomodate the fact that m, , is replaced by m, ; 41 for this decomposition, i.e., the lines
joining the m,; or m,;_, nodes to the m, ; node have weights k;, — p — 1 for I<p<k;, and p — k, + 1 for k, <p<i.

(3) Each of the CP’s has two centers which are not connected to each other. The first CP displays rowsj — 1 andj —2
explicitly, with an extranodem; _, ;| = Oin the (j —2) row. In evaluating the commutator [E, ; | ,E; _, ; ] we encounter
two centers at (k; _, J — 1) and (k; _, j ~ 2) in the two rows. We first join the center (k; _, / — 1) to all the other nodes in the
J— 1andj — 2 rows except to the other center (%, _,,/ — 2). Noting that the center (k; _,,/ — 1) hasa weightm, ;| +1,
due to the action of E; , ;, we assign weights k;, | —p —1for I<p<k; _, andp—k; _, +1fork, , <p<j— 1 and retain
the weightm, ., for the center in the CP. Similarly we draw lines connecting the center (%; _,, f —2) to all other nodes in
thej — 1 andj — 2 rows except to the other center (k; _,,/ — 1). Since (k; _,, j — 2) still has the weight m K, ,.j—2> Weassign
weights k, , —pfor 1<p<k; , andp —k;_, for k; _, <p<j— 1. In general each of the CP’s displays two rows, pth and
(p — Dth (j — 1>p>i + 1) with two centers at (k,, p) and (k, _,, p — 1). The centers are not connected to each other. We let
m,; with the same / constitute “planes.” The lines joining the center (k,, p) to other nodes have weights 0,1,2,....etc., as the
node joined lies in a plane successively to the left of the plane of the center, and 2,3,...,etc., as it lies in a plane successively to the
right. The line joining the center (k, _, , p —1) has weight 1,2,...,etc., as the node lies in a plane successively to the left or right
of the plane of the center. The weight of the line joining the center with a node in its own plane has weight 1 for center (k,, p)
and O for center (k, ,p —1).

(4) Finally a CP with p and p — 1 rows displayed, having centers at (k,, p — 1), contributes an overall phase factor of
(=Difk, >k, _,.Otherwise the factoris +1.

As a direct application of these rules we work out a reasonably complicated example of a matrix element of £, of U(6).
Consider the following matrix element

()], & 1€ g llim] 8

m m
L h‘2€ My me 13 66
m m m m55 +1
m’s 25 15 45 m
my,+ my, M3 o 44
- My Myt k]
m12+1 my2
myq +1
m Mgs
m m 56
Mie M ® . “ m, Mgg
m15 25 B m
] e "o ™ 2
16 My M23 M3 (38)
m12 my2
My

We apply the above rules (1)~(4) to evaluate the matrix element of Eq. (38).
(o)) 81" 18743 Fp3 b8~ B m)i¢ V8 ¢ V4 Y439 &)

\\°4\N2\1 \0 1 /
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<7 1]+

b

\ (39)

Using the rules for associating algebraic factors with the lines in the above patterns, we obtain after simplification, the result
({(mO)¢" 1 E\o | L)) )

_ [ (M — mss +4)(maq — mss +3) My, — Mss -+ 2) (Mg — Mss + D(msq — Mss)imss — mge + 1) ]]/2
(M s — Mmss +4)mas — mgs + 3)(mys — Mmss + 2)(mys — mss + 1)
X [ (Mg — Mss +2) (M35 — Mss + Dy — ms)im s —my,)
(mys — mss + 3)(mys — mss +2)(mys — mgs + 1(mys — mss)
% (Mg —mys + D)(myy — mys +2) (Mg — mys +3) }1/3
(M, —may +D(my—may +2)(m, — myg +3)
x { (M —mys + Dmyy — myy +3)m 5y — mya)0nay — may + Dmyy — myy +2) ]1/2
(m g — Moy +2)m g — My, + 3y — Mgy + (M5 — Moy + DMy — mayy + 1)
[ (moy — myy + Dm s — mpp)(my, — msy +2) ]1/;[ (myy —my +1) ]1'2
(s — Mmooy — Mgy +2)(my; —map + 1) (myy—my +2) .
The correctness of the above expression may be verified by either directly using the Baird-Biedenharn formula® for the matrix
element of E,,, or the full expansion of the commutator [E,,,[E,3,[Es4[Eys,Es]1]], and the simple formula for £, _, ;. Assum-

ing the set of rules to be true for the evaluation of matrix elements of an arbitrary E;; it is easy to show that the rules hold for
matrix elements of £, _, ; (or E,; ,, ), i.e., the pattern calculus rules can be inductively shown to hold good.

(40)

4. DISCUSSION | ers's implies the essential correctness of the procedure

The study presented in this note may be broadly catego-
rized as consisting of two parts. In Sec. 2 we have carried the
valuable suggestions of Moshinsky,” Biedenharn and Gif-
ten,® Lezuo,” and Patterson and Harter®® regarding the use
of Sy in generating basis states of the IR’s of U(x) to their
logical conclusion. The similarity of the results obtained by
us with those due to Biedenharn,? Moshinsky,'® and oth-
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adapted. The only empiricism used was in weighting

E; | [(m)];¢ ¢ ¢ g ") by [V, +1) N, 1" for i#).
This was dictated by the desire to have as close a correspon-
dence as possible with the results of earlier studies.'> Equa-
tions (18), (19), (23), (24) are determined entirely from per-
mutational symmetry of the monomial tensor products. The
major difference between the present work, and that due to
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Moshinsky and Nagel,” lies in replacing polynomials of low-
ering generators used in the latter work by the symmetrized
combination of the matrix algebra associated with S .

The simplicity of form of the decomposition coeffi-
cients in Egs. (19) and (23), and a very useful suggestion
from the work of Holman and Biedenharn'? enabled us to
develop a pattern calculus approach in Sec. 3. This, as has
been shown by the examples of that section, has led to a very
straightforward procedure for determining the matrix ele-
ments of E; of U(n). The rules used are relatively simple and
permit computer programs to be developed readily. The ma-
jor simplification follows here in implicitly incorporating a
large number of commutator brackets into the pattern calcu-
lus, simply by having “gaps’’ between two centers in a com-
bined diagram. The phase factor can be readily determined
as illustrated by the examples. The interesting feature of the
results is that, including the correct phase factor, the reuslts
of earlier formalisms have been reproduced using a relatively
simple procedure. It should be pointed out that the use of
commutator brackets is essential only to arrive at the pattern
calculus. The matrixelement ([(m')];¢ '| E; |[(m)];¢ ) canbe
calculated directly by considering the action of the cyclic
permutation P-' on [(m)] and comparing with [(m’)], where
¢ ' = P(E;¢). This procedure is, however, quite cumber-
some and not suitable for generalization.
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A computer program based on pattern calculus of Sec. 3
is being developed at present.
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Representations of the nonrelativistic current group .”” A % are studied in the Gel’fand-
Vilenkin formalism, where . is Schwartz’ space of rapidly decreasing functions, and %" is a
group of diffeomorphisms of R". For the case of ¥ identical particles, information about particle
statistics is contained in a representation of %", (the stability group of a point Fe_#"') which
factors through the permutation group S, . Starting from a quasi-invariant measure g
concentrated on a %" orbit A in ., together with a suitable representation of %" for Fed,
sufficient conditions are developed for inducing a representation of %" A %", The Hilbert space
for the induced representation consists of square-integrable functions on a covering space of 4,
which transform in accordance with a representation of .%" ;.. The Bose and Fermi N-particle
representations (on spaces of symmetric or antisymmetric wave functions) are recovered as
induced representations. Under the conditions which are assumed, the following results hold: (1)
A representation of " A %" determines a well-defined representation of %" ; (2) equivalent
representations of 7" A %" determine equivalent representations of %" ,.; (3) a representation of
X . induces a representation of ¥ A ¥7; and (4) equivalent representations of %", determine

equivalent induced representations.

I. INTRODUCTION

The nonrelativistic quantum mechanics of many identi-
cal particles may be described by means of a field ¢ (x) satis-
fying either canonical commutation relations (CCR) and de-
scribing bosons

[ 0¥ W] = [P*®),0*¥)]- =0,

[ ) ¥*(¥)] =6(x —y), (1.1
or satisfying canonical anticommutation relations (CAR)
and describing fermions

[ )¢ ] = [P*®)¥*(9]. =0,

[¥ (), ¢*(¥]. =6(x —y) . (1.2)
The statistics of the system is thus determined by the algebra
which is to be represented.

In the formulation of nonrelativistic quantum mechan-
ics in terms of particle densities and currents, one defines

p(x) = P*x) (x),

J(x) = Q' [PV (x) — (V) (X)), (1.3)
and obtains the commutation relations

[p(x), p(¥)] =0,

[pOOTe)] = — i~ [ p)8(x — )],
Ix,
0000 = == [7,06(x ~ 5)]
Xk
b 8‘9 V@sx—v]. (14

i

“'Work supported by the U.S. Department of Energy.
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The calculations may be carried out formally, or performed
explicitly in the Fock representation of the underlying field;
but the same commutator algebra (1.4) is obtained whether
one begins with the CCR or the CAR. Thus, in a nonrelati-
vistic current theory, the particle statistics is not determined
by the choice of an equal-time algebra, but instead may be
determined by the choice of a representation of the
algebra.'”

The fundamental object of study in the present paper is
the group obtained from (1.4) by exponentiating the local
currents. This group is a semidirect product .*" A %", where
/" 1s Schwartz’ space of rapidly decreasing functions, and
%" is a certain group of diffeomorphisms of R*; representa-
tions of %" and ./ A %" have been studied by several au-
thors.**® In the Gel'fand—Vilenkin formalism for describing
representations of nuclear Lie groups,” a continuous unitary
representation of 7" A 4" may be characterized by means of
(1) a quasi-invariant cylindrical measure iz on ., the space
of tempered distributions, together with (2) a system of uni-
tary mappings satisfying an algebraic compatibility condi-
tion, which in this paper we call a “‘system of multipliers.”

To classify the representations of . A %" with respect
to statistics, we follow the approach introduced by Wigner
for the Lorentz group and generalized by Mackey to semi-
direct products of second-countable locally compact
groups.''? For Fe.””', we consider the “little group™ %",
the subgroup of .%” which leaves F fixed. We shall establish a
correspondence, under appropriate conditions, between the
system of multipliers defined by a continuous unitary repre-
sentation of .#" A.%”, and a unitary representation of %" ,..

Our main result is that information about particle stat-
istics is fully contained in the representation of the little
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group; and that starting from the measure ¢ and a represen-
tation of %, one can obtain a representation of the full
group . A ¥ by means of an inducing construction (in the
sense of Mackey).

As part of this construction, we recover the N-particle
representations of ¥ A % in a Hilbert space of square-inte-
grable functions. These functions must be chosen to be either
symmetric or antisymmetric under exchange of particle co-
ordinates, depending upon which of two inequivalent repre-
sentations of the little group is selected. These representa-
tions of the little group correspond to Bose and Fermi
statistics, respectively. Thus, starting from a representation
of the little group, we recover the usual connection between
particle statistics and the symmetry of wave functions.

The principal difficulty in obtaining our results arises
from the fact that the diffeomorphism group .%#" is not local-
ly compact, and consequently does not possess Haar mea-
sure. (Girardello and Parravicini have indicated how the
theory of induced representations can be extended to the
case of a semidirect product of a nuclear space with a locally
compact group.'?) Thus, Mackey’s theory of induced repre-
sentations, which utilizes Haar measure heavily, cannot be
carrted over to our problem in a direct fashion. The main
mathematical work of this paper will be to show how the
topological properties of an orbit on which the measure is
concentrated can be used to construct induced representa-
tions of & A J%". The Hilbert space for the induced represen-
tation consists of square-integrable functions on a covering
space of the orbit which tranform in accordance with the
little group representation.

Section ITis devoted to the necessary background mate-
rial. After giving a precise definition of the group % A %,
we review the needed concepts from the Gel’fand—Vilenkin
and Mackey theories, emphasizing the parallels between
them.

In Sec. I1I, we take a brief step away from the formal
development in order to gain some physical intuition about
what one should expect to be true in the abstract representa-
tion theory. We use the familiar N-particle representations
of the current algebra to infer properties of the Gel'fand—
Vilenkin system of multipliers. In particular, we note the
connection between a system of multipliers and the (relative)
phases of the ground state wave function at distinct points;
and we examine the topological properties of the orbits and
their covering spaces. The little group for an N-particle re-
presentation maps into S, the permutation group on & ob-
Jects. We then associate systems of multipliers with repre-
sentations of S, and hence (Bose or Fermi) representations
of the little group.

Section IV contains the main mathematical results of
the paper. First we review the concepts of a fundamental
group, covering space and universal covering space for an
orbit 4 in %" The following results (informally stated here)
are then proved: (1) A system of multipliers satisfying appro-
priate conditions determines a well-defined representation
of the little group; (2) systems of multipliers which corre-
spond to unitarily equivalent representations of ¥ A.%” de-
termine unitarily equivalent representations of the little
group; (3) under appropriate conditions, a representation of
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the little group determines an induced representation of

J N% ; and (4) equivalent representations of the little
group determine equivalent induced representations of

# A%, and hence equivalent systems of multipliers. Col-
lectively, these theorems amount to a partial extension of
Mackey's induced representation theory to the non-locally
compact group .~ A %". The theorems are proved for a class
of orbits in .’ which includes, but is not limited to, orbits
defining the usual N-particle representations of the current
algebra.

Section V summarizes the assumptions made on the or-
bit and the system of multipliers which are sufficient to per-
mit the characterization of a representation by means of a
little group representation. We will have occasion to refer to
the interesting recent paper of Vershik, Gel’fand, and Graev,
where an important class of representations of . A %" is
constructed.® Certain of these representations fit naturally
into the framework we describe here. Some interesting open
questions are also mentioned.

Appendix A contains the technical result used in Sec.
IV, that in a space such as %' the weakly open sets are mea-
surable. Appendix B reformulates some of our results using
cohomology theory. For the class of representations consid-
ered here, the systems of multipliers can be identified with
cocycles on the orbit.

il. DEFINITIONS AND BACKGROUND
A.The group . A%~

Representations of the current algebra (1.4) can be
studied by averaging the densities with test functions from
Schwartz’ space .*(R®) of C “ functions which, together
with all their derivatives, decrease rapidly at infinity. Then,
with

o(f) = f d'x p()f (), fer

J@O= Y |dxe®, ger, @1)
the algebra becomes

Lp(/), p(21 =0,

(NI @] =ipEVf), 22

[/ (8. (h)] = iJ (h-Vg — g-Vh) .

The argument of J on the right hand side of Eq. (2.2) is the
Lie bracket of the vector fields g and h. Thus, J is a represen-
tation of the Lie algebra of C * vector fields on R* which,
together with all derivatives, decrease rapidly at infinity.

The Lie algebra (2.2) will in general be represented by
self-adjoint unbounded operators. It is useful to study in-
stead the corresponding infinite-dimensional Lie group and
its continuous unitary representations. Each vector field g is
the infinitesimal generator of a one-parameter group ¢* of
C = diffeomorphisms or flows on R’ satisfying

a (*4
LAY
ot
o) =x. 2.3)

G.A. Goldin, R. Menikoff, and D.H. Sharp 651



A group containing these flows as continuous one-param-
eter subgroups is the following group %~ of C = diffeomor-
phisms of R*. Let /", be the group of all C = diffeomor-
phisms from R® onto R® having compact support, with the
operation of composition. . %", may be topologized by means
of the countable family of metrics

€b>, = max sup |(1+ [x) (4700 — 601 |
forn = 0,1,2,...; where (m) = (m,,...m,) is an s-tuple of non-
negative integers; [m| = 2} . m,; and ¢$""(x)

= " d(x)/(Fx,)" (Ix,)™ . # may be defined as the com-
pletion of . %", with respect to this topology. . %" is then a
topological group; the topology is metrizable, and %" has a
countable basis of neighborhoods of each point. .*” contains
diffeomorphisms which are not of compact support but
which approximate the identity mapping as |x| — co. It has
been conjectured, but not explicitly demonstrated, that if g
has components in % then ¢* is an element of %" and the
mapping g — ¢F is continuous.'*

We conjecture that % is pathwise connected and sim-
ply connected, although we are not aware of any easy proof.
In any case, %" is locally path-connected, and the path com-
ponent of %" which contains the identity also contains the
one-parameter subgroups, which are the elements of %" of
physical interest.

Considering p( f) and J (g) to be self-adjoint operators,
the corresponding one-parameter continuous unitary
groups are

w(tfy=explit p( )],

77 (&F) = explir J(g)] . (2.4)
From Eq. (2.2), these satisfy the group law
%) 7 ()

= (fi + o007 (b,0), 2.5)

for f1,/>€.7 and ¥, 0.7, where (f3°0,)(x) denotes
S>(,(x)). Thus, the appropriate object of study is the semi-
direct product ¥ A %", with the group law defined by
(/b)) = (fi + f£200,,8,°¢). In the topology for
%" introduced above, the group operations in . A % are
continuous (when . has its usual topology as a nuclear
space).>'* Then . A %" defines a topological group in
which the one-parameter subgroups (¢ f,¢) and (0,¢¥) are
continuous, where e(x) = x is the identity in %", A continu-
ous unitary representation of & A % given by W(f,) =
(Y7 (1) permits recovery of the self-adjoint operators
p(f)and J (g) as the infinitesimal generators of % (¢ f) and
77(d%), respectively.

A topological group is said to be locally compact if ev-
ery point has a neighborhood whose closure is compact. This
is an important condition for utilization of Mackey’s theory
to classify its continuous unitary representations (see be-
low). However, neither . nor %" is locally compact in the
above topologies.

B. Application of the Gel'fand-Vilenkin formalism (Refs.
3,5-9,15)

Let . be a nuclear space (such as Schwartz’ space). Its

852 J. Math. Phys., Vol. 21, No. 4, Aprit 1880

continuous dual #' is equipped with a o algebra of measur-
able sets generated by the cylinder sets with Borel base. A
cylindrical measure y is a countably additive normalized
positive measure on this o algebra. A functional L (f)on .
is the Fourier transform of a cylindrical measure y, i.¢.,

L= [ el N1dutE),

s

(2.6)

where Fe.””’, ifand only if L ( f) satisfies the following condi-
tions: (1) L ( f) is continuous with respect to the topology of
52y L (0) = 1;and (3) L ( f)1is positive definite in the sense
that (V f,,..., f,€5) (VA,,...4,€0)

S TAL, = £)50.

Sk =t

Let % be a continuous unitary cyclic representation of
% in a Hilbert space 5 with cyclic vector £2. The functional
L (f) = (,U(f)N)satisfiestheaboveconditions,defininga
cylindrical measure 2. Then 5 can be realized as . f‘ N,
{2 as the u-square-integrable function 2 (F)=1, and % (f)
as the multiplication operator exp[i(F, /)] in .£"%(5"). Con-
versely, every cylindrical measure u on % defines a con-
tinuous representation of . in .77, () with cyclic vector
£2 (F)=1. Twocontinuous unitary cyclic representations % ,
and %, of & are unitarily equivalent if and only if the corre-
sponding cylindrical measures g, and i, are equivalent (i.e.,
bave the same sets of measure zero). The second representa-
tion may then be thought of as differing from the first only in
the choice of a different cyclic vector in .7, (J").

With % (f) = expli p( )], the self-adjoint operator
p(f) is represented in .#"; (.*") as multiplication by (F, f).

Suppose that . A % is the semidirect product of %
with a topological group % (such as the diffeomorphism
group above), so that the mapping . X ¥~ — % defining
the group operation is jointly continuous in the topolo-
gies™ ' of . and %", For V€%, the action of ¢ on .7 de-
fines a dual action $*:.¥' — %' by the equation
(*F, f) = (F, f o). b*is linear and continuous in the weak
topology of %", In fact, $*F is jointly continuous from
KX into S, since (F, f) is jointly continuous and f o
is continuous. If XC %" is a measurable set, then $*X is
measurable, since P* maps cylinder sets onto cylinder sets.
A cylindrical measure i is called quasi-invariant for % if 4*
preserves sets of z-measure zero.

Let % (f)7 () be a continuous unitary representation
of A K in 7, with Qe57 cyclic for % . Then the measure
u defined by Eq. (2.6) with L (f) = (12, %% (/)42 ) is quasi-
invariant for . In .£2 ("), the representation
LA 7 () becomes

(% (SYVUF) = expli(F, Y (F),

. du(b*F)]12
7V IF)Y =y, FW *F[—-————],ZS

L7 WY IF) = x (F)¥ (*F) GuF) (2.8)
where ¥ (F)isafunctionin &, (%); [du(*F )/du(F )]isthe
Radon—Nikodym derivative of the transformed measure
with respect to the original measure; and y,, (F) is a com-
plex-valued function of modulus one, depending on 1, de-
fined almost everywhere, and satisfying (for each pair J,, ¢,)
the compatibility condition

()]
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Yo, Exy, WIF) = xy, 00, F) (2.9
almost everywhere. That is to say, for each 1, there is a set
Z ,, of measure zero outside of which y, (¥) is defined. Like-
wise, for each pair ¥,,\, thereisaset ', , of measure zero
outside of which Eq. (2.9) holds. A set of functions y,, (F)
satisfying these conditions will be called a system of
multipliers.

The choice y,, (F)=1, V1, satisfies Eq. (2.9), and de-
fines a representation which may or may not be equivalent to
the original.

The representation (2.8) of ¥ A % is irreducible if and
only if u is ergodic for %, i.e., if for any measurable invar-
iant set X in .%", either u(X) = 0 or u(#'\X) = 0. For
Fe”',thesetA = [V*F |Ye¥"} is called the orbit of Funder
the action of .%”; an invariant set is the union of a (generally
uncountable) family of mutually disjoint orbits. Supposing
that the orbits comprising X are measurable, there are two
ways in which a cylindrical measure 2 can be ergodic: it can
be concentrated on a single orbit, or else every orbit can be of
u-measure zero. Both situations occur when % is the diffeo-
morphism group discussed above.

C. Comparison with the Mackey theory

The Mackey theory'''? considers continuous unitary
representations of topological groups satisfying the techni-
cal assumptions of being second countable (i.e., the open sets
have a countable basis) and locally compact. Some minor
changes in Mackey’s notation emphasize the parallels with
the preceding section.

Let G = NAH, where N is an Abelian normal sub-
group of G. N denotes the character group of ¥, which has an
orbit structure under the action A * of elements of H. For
FeN,(h *F)(n) = F (hn). Theclosed subgroup H - of Hwhich
leaves F fixed is called the stability group or little group
associated with F. If Fand F’ are elements of the same orbit 4
of N, Hg and H . are isomorphic, and the points of A may be
identified with the elements of the quotient space H /H - (the
space of right cosets).

Since H is locally compact, there exists a right-invariant
measure (Haar measure) on the o algebra of Borel sets in H,
Letting p : H — H/H . be the surjective mapping
p(h) = Hh, there exist quasi-invariant measures in H /H :
letting v be any finite measure in the measure class of Haar
measure, define ¥(X )} = v( p7(X)) for any set Xin H /H,
such that p"'(X') is Borel in H. The quasi-invariant measures
on H /H are equivalent.

Given an irreducible continuous unitary representation
L of Hy_, for some FyeN, with values in a Hilbert space .4,
one obtains the (irreducible) induced representation
% ()7 (h)of N A H. Consider the Borel functions & from H
to.# which satisfy ¥ (kh y=1L, (¥ (h))forevery keH, . 1f
¥ satisfies this equation, W h)= v (hg) also satisfies it.
Then the function (W r), W (h)) is a constant on every coset
Hp h, and may be integrated with respect to the quasi-invar-
iant measure v in H /H . Define the Hilbert space 77 to be
theset ofall Wsuch that f A 12 k), ¥ (k )) dvisfinite. Then
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(% ()P )h) = (h*F)m)¥ (),
dv(H - hg) ]‘/2

T (2.10)

(7 (@¥)h) =¥ (hg) [

define the representation % (n)77(g).

These results can be expressed in a way which brings
out their relationship to the Gel’fand—Vilenkin theory more
clearly Consider a quasi-invariant measure 4 on Borel sets
in N. Define the space Z (N,.#), where We.%? (N.#)isa
square-integrable Borel cross section with values in.#,ie.,
to each point FeN, we associate a copy of .# denoted .# .
andforeach F, ¥ (Fle.# . To say that ¥is Borel means that
when N X .# is given the product Borel structure it becomes
a Hilbert bundle on which (F,®) — (¥ (F),®) is a Borel
function. A

Let (F,h ) — L, (F)beaBorelmapping from N X Hinto
the unitary operators on ..#, satisfying the equation

L, (FY=L,(F)L, (htF). @1

L, (F) may be regarded as a mapping from .4, ., to .# .,
and Eq. (2.11) as a compatibility condition on these map-
pings. Then in f (N #) we have the representation

(%MW )F)=Fm¥(F),

du(h *F)]'?

(7P )F)=L,(F)¥(h *F){ (P ] .(2.12)

For the representation (2.12) to be irreducible, x4 must be
ergodic with respect to the action of H on ¥, and there are
again two ways in which this can occur. Either g is concen-
trated on a single orbit 4, or else (the strictly ergodic case) the
measure of every orbit is zero.

When p is concentrated on a single orbit 4, select Fed.
Then 4 corresponds to H /H . and L, (F,) defines a repre-
sentation of the little group A . . The representation (2.12) is
in this case equivalent to the induced representation (2.10)
obtained from the representation of the little group. If it is
possible to select a Borel subset of N which meets each orbit
in just one point, then every irreducible representation of
N A H can be obtained from an orbit 4 together with a repre-
sentation of the little group H, for Fyed.

Thus, for locally compact groups N A H the Mackey
theory can be expressed in a fashion which is analogous to
the Gel’fand—Vilenkin theory: L, plays the role of the Gel’-
fand-Vilenkin system of multipliers y,, N is the analog of
" and g is in each case a snitable quasi-invariant measure.
In Sec. IV, we will show how this parallelism can be ex-
tended to the non-locally compact group . A %",

1ll. STATISTICS FROM N-PARTICLE
REPRESENTATIONS OF THE CURRENT ALGEBRA

To understand how particle statistics is described in the
local current formulation of quantum mechanics, we first
discuss the N-particle representations of the algebra. This
serves to identify the important properties of particle statis-
tics which are to be carried over to the more general setting
of the Gel’fand—Vilenkin representation theory.
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A. N-particle representation of the current group
S N% (Refs. 3,15,16)

We consider a system of N identical spinless particles
for which there exists a time reversal-invariant ground state.
As in Sec. I1, we consider the unitary operators % ( f)

= expli p( /)] and 77($¥) = explit J (g)]. Let ¥, be an ele-

ment of .¥ Zt (R*"), the Hilbert space of symmetric ( 4+ ) or
antisymmetric ( — ) square integrable functions of N vector
variables in s space dimensions. The equations

U)Wy = eXp[i ﬁ‘, f(xf)] Py

i=1

7)Yy (X)X y)

— (b)) [ [det(a¢k (xj))]'/z, G.1)

= ax'
with fe.% and Pe.%", define irreducible representations,
called the N-particle Bose ( + ) and Fermi ( — ) representa-
tions, of the group /" A %"

The N-particle representations can be described in the
Gel’fand-Vilenkin formalism as follows: One first chooses a
normalized vector £2 which is cyclic for the Z(f)'s, i.e.,

{ % ()12} spans a dense subset of the Hilbert space. The
cyclic vector can ordinarily be chosen to be the ground state
of the system, but any other normalized wave function
which is nonzero almost everywhere would suffice.

Nextlet F, €. be givenby (F, ,f) = f(xo), ie, F,,

= §(x — x,). Noting that *F, = F, ,, weintroduce the
single orbit

A9 = {F: S F.

J=1

X, #x,, for i;éj]Cf’. (3.2)

The orbit 4 § may be identified with the configuration space
I'$) of N particles, which consists of the collection of (unor-
dered) sets of N distinct points in R’. Thus, F = Z}_ | F,
€4 ¥ is uniquely identified with {x,,~xy el{. 4§ isin
the o algebra generated by cylinder sets with Borel base in
. A quasi-invariant measure g concentrated on 4 § can

be written as u(X } = f,du(F ), where

du(F, + -+ F, )= |2 &,xy)|’d % ~d*xy .
33

Finally, we define a system of multipliers by @3

Yo(F)=Arg [O (b(x), - b(x )2 (x,x4)] .(3.4)

Both ¢ and y are well defined as long as £2 is either symmet-
ric or antisymmetric with respect to the exchange of any pair
of coordinates.

The measure 4 and the system of multipliers y,, deter-
mine a continous unitary representation of the current group
S NF on L, (S"), according to Eq. (2.8) of Sec. II, equiv-
alent to the representation given by Eq. (3.1). The self-ad-
joint operators p( f) and J (g) are recovered as infinitesimal
generators of the corresponding one-parameter unitary
groups:

Py = 3 S )Wy,

j=1

J@¥y = 3 (6}, + V8]

j=1

(3.5)
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Since p and J are symmetric in the particle coordinates,
and we are considering representations which are cyclic for
thep(f)’s, the symmetry or antisymmetry of any wave func-
tion corresponds to that of the cyclic vector in the represen-
tation. Since the symmetry of a wave function £2 (x,--,X ) is
determined by its relative phase at certain points, rather than
by its magnitude, we find that when working with the local
currents, information about particle statistics is contained in
the properties of the system of multipliers, rather than in the
measure .

From a physical point of view, it is to be expected that
information about statistics is contained in the representa-
tion of the local current algebra (1.4). This is because J(x)
can generate local rotations, and hence one can find an oper-
ator 7 () which exchanges a given pair of particle coordi-
nates.” Information about the change in phase of the wave
function under the action of 77°() is contained in y,,. How-
ever, the case s = 1 is an exception, since there will be no
local rotation which exchanges pairs of coordinates. In this
case the representations (3.1) are unitarily equivalent for bo-
sons and fermions and it is necessary to adjoin another oper-
ator such as the Hamiltonian in order to distinguish them.’

B. Statistics from the little group representation

Next we show how the information about statistics is
contained in the representation of the little group deter-
mined by the system of multipliers.

Let FeA . The little group % - is given by
{67 |o*F = F }. It follows from Eq. (3.4) that y, (F) re-
stricted to e %" determines a continuous unitary represen-
tation of the little group by complex numbers.

Let EC. ¥, be the path component of the identity in
K g, i.e., X if there is a continuous path ¥, in %7, such
thaty, _, =eand{, _, = ¢. Then Eis a normal subgroup
of % and the path components of %" correspond to the
elements of the quotient group %" ,./E. In configuration
space, with F identified with {x,,-,x }, we have e%" . if
{X),Xn ] = {d(x)),,d(xy)}. We see that two elements of
a path component of %", must implement the same permu-
tation of the N-tuple of points {x,,-,x5 }. Thus, thereis a
homomorphism from % ./E to the group S, of permuta-
tions on N objects. For the N-particle representations of the
current group, the value of y, (F) is the same for all p in a
component of %, and the representation of % - factors
through S.

If s3>2, the N-particle multiplier y,, (') determines a
representation of S, since the above homomorphism is sur-
jective. This representation of S, is just the representation of
S, determined by the symmetry or antisymmetry of the
wave functions. The symmetric representation corresponds
to bosons, the antisymmetric one to fermions. As a result we
have the fact that the representations of S, determined by
¥ (F) are equivalent for almost all Fed ).

Only the one-dimensional representations of S occur
here because we are considering spinless particles, having
representations that are cyclic for the p( f)'s. It is because
there are just two one-dimensional representations of S,
that only totally symmetric or totally antisymmetric cyclic
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vectors generate well-defined systems of multipliers.

It has been shown that, for s>2, the Bose and Fermi V-
particle representations of the current algebra are unitarily
inequivalent.?* This may be regarded as a consequence of
the inequivalence of the Bose and Fermi representations of
the little group, as will be proved in Sec. IV.

The system of multipliers actually contains more infor-
mation than is necessary for specifying the representation of
the little group. For example, the system of multipliers
X (F)=1 for all ¥ and F defines a Bose representation,
which results from choosing the cyclic vector to be real and
strictly positive (e.g., the ground state of the system). Other
Bose systems of multipliers correspond to other choices for
the cyclic vector. Though the systems of multipliers thus
obtained are different, they define unitarily equivalent repre-
sentations of the group ¥ A %" and lead to equivalent repre-
sentations of the the little group.

The system of multipliers corresponding to a given cy-
clic vector may be ill defined for some choices of Y and F. For
example, if the wave function for the cyclic vector vanishes
at some points (a set of measure zero), its phase at such
points is ill defined, and y, (F) is not well defined every-
where by Eq. (3.4). This is the case if the cyclic vector is the
ground state of an N-particle Fermi system, since a continu-
ous real-valued antisymmetric wave function £2 (x;,--,X)
must have nodal surfaces in R*. Moreover, the cyclic vector
can be changed arbitrarily on a set of measure zero. For
particle statistics to be well defined, we need to exclude the
possibility that this can happen in such a way as to affect the
representation of the little group.

Cyclic vectors describing physical systems are (almost
everywhere) continuous nonzero wave functions, and lead to
multipliers y,, () which are jointly continuous in ¢ and F
except for Y*F or FeZ, where Z CA4 ¢ is a set of measure
zero. This condition will be shown to be sufficient to unique-
ly determine a representation of the little group %", for
FEZ . If the cyclic vector £2 is chosen to be the ground state
of a Fermi system, the set Z becomes (F, + -+ F,

12 (xy,+xy) = 0}.

Although the phase of the cyclic vector may not have a
natural definition everywhere, it can be defined everywhere
(rather arbitrarily) in a manner consistent with the symme-
try of the representation. Consequently, the system of multi-
pliers defined by Eq. (3.4) can be chosen so that Eq. (2.9)
actually holds everywhere.

C. The orbit 47 and its covering space RsV\ D

We have outlined how the usual formulation of the
quantum mechanics of V identical particles in terms of wave
functions can be expressed using a measure and a system of
multipliers in the Gel'fand-Vilenkin formalism, leading to a
representation of a “little group” which describes the parti-
cle statistics. We next discuss the converse: how one can start
from a measure on a single orbit 4 § and a representation of
the little group, and recover the usual wave function formu-
lation of quantum mechanics, in which the symmetry of the
wave functions under interchange of coordinates character-
izes the statistics.
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In Sec. I we pointed out that in the Mackey theory one
considers functions on the group ¥~ itself, which transform
in accordance with the given representation of the little
group. Since the group is locally compact, it possesses Haar
measure, with respect to which the Hilbert space is con-
structed for a unitary representation of %

To generalize the inducing construction to the non-lo-
cally compact group of concern here, we will need to make
use of the topological properties of the orbit, rather than
those of the group. For the N-particle representations, the
original wave functions can be defined on a coordinate space,
which consists of ordered N-tuples of distinct coordinates in
R*. We denote this space by R*¥ \ D, where
D = {(x,,-xy)|x; = x,; for some i j} . Since D is of mea-
sure 0 in R*Y, omitting this set from the coordinate space
does not affect the wave functions. This coordinate space is a
covering space for the orbit 4 §). We denote the natural pro-
jection of the coordinate space onto the configuration space
by p RV \D — 4  and use the notation FER*¥ \ D if
p(F)=FeAf).

The action of the elements of %~ on the orbit 4 ¢ can be
lifted to the covering space R*¥ \ D so that if p(F) = F,
p(V*F) = V*F; and so that ¥, *F = ,*Fif ¥, ‘o1, is in the
path component of #”,. connected to the identity. For
F = (x,,-,Xy), this action is given by
Y*F = (P(x,),V(xy)). Due to the nontrivial connectivity
of 4 Y, the system of multipliers y,, (F) cannot be expressed
as a single-valued function of the two variables Fand $*Fin
4 §; however, y,,(F) can be written as a function of Fand
P*F by means of Eq. (3.4)."

The quasi-invariant measure ¢ on 4 9 can also be lifted
to a measure g on R*¥ \ D which is equivalent to the usual
Lebesgue measure. Thus, the usual wave function represen-
tation is recovered.

In Sec. IV we show how the above example can be gen-
eralized to carry out an inducing construction yielding a
class of representations of %" A %"

Remarks: (1) In a recent paper, Bloore and Swarbrick
also seek to describe quantum mechanical wave functions by
means of functions on configuration space.'® Defining the
projection mapping from R** \D onto I"'{, they obtain a
correspondence between rays of Bose or Fermi wave func-
tions on R*" and eqivalence classes of functions from
R*V /S, to C/S, which satisfy an appropriate (Bose or Fer-
mi) homotopy condition. However, their classes of functions
do not form a linear space.

In our opinion, the nonrelativistic current algebra in a
Gel'fand-Vilenkin representation provides a natural context
for the examination of wave functions describing identical
particles as functions on configuration space.

(2) It is interesting that the topology of the N-particle
orbit depends critically on the number of space dimensions s.
The nontrivial connectedness properties of the orbit are a
consequence of the fact that configurations in which two or
more points coincide are not included.'®

For s>3, the coordinate space R*¥ \ D is simply con-
nected, and hence it may be identified with the universal
covering space of 4 §. For s = 2, the coordinate space
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R?¥\ D is multiply connected. In carrying out the inducing
constructionin Sec. IV, we are led to functions on the univer-
sal covering space of the orbit. Consequently, for s = 2 there
may be representations other than the usual ones corre-
sponding to wave functions on R*" \ D. These are not dis-
cussed further in this paper.

Fors = 1, the orbit is simply connected. The configura-
tion space R” \ D decomposes into disconnected compo-
nents, each of which is isomorphic to the orbit. The little
group possesses only one component, the identity compo-
nent. As a consequence, the representations of the current
group corresponding to Bose and Fermi systems are unitari-
ly equivalent.

IV. INDUCED REPRESENTATIONS OF THE CURRENT
GROUP 7 A%

This section is devoted to establishing the main math-
ematical results of the paper: sufficient conditions for the
connection between systems of multipliers and representa-
tions of the little group; and the construction of induced
representations of %" A %" starting from certain representa-
tions of the little group.

We assume a quasi-invariant cylindrical measure p
concentrated on a single measurable orbit 4 in .. In Ap-
pendix A it is noted that any weakly open set in .’ is con-
tained in the o algebra generated by the cylinder sets with
Borel base. Endowing 4 with the restricted weak topology,
any open set in 4 is also measurable.

The main difficulty to be overcome is the absence of
Haar measure on J%". Thus, there is no naturally defined
measure on the product space 4 X %~ which would permit
us to associate with a system of multipliers a well-defined
representation of the little group. Infact, Eq. (2.9) holds only
almost everywhere for each pair of elements of %" If the
elements of %~ are both chosen to belong to the little group
K, it is possible that F, happens to belong to the set of
measure zero where Eq. (2.9) fails, and thus a representation
of the little group is not even defined. This difficulty is met by
requiring the system of multipliers to satisfy a certain con-
tinuity condition.

The main technique will be to construct the universal
covering space 4 of A, and to consider representations of the
little group which factor through a representation of the fun-
damental group of 4. In this fashion we shall obtain induced
representations of ¥ A %~ which include the N-particle re-
presentations discussed in Sec. I11, and which give us their
classification as Bose or Fermi representations.

First we outline the necessary background concerning
covering spaces.

A. Homotopy for orbits in .’ under the action of %"
(Ref. 20)

Let A be a measurable orbit in .#" under the action of
%", endowed with the restricted weak topology. The orbit 4
is connected because % is connected. A path in 4 is a con-
tinuous mapping from the unit interval [ into A. We shall
assume A to be locally pathwise connected (i.e., there exists a
neighborhood basis of path-connected open sets), and semi-
locally simply connected (i.e., every point Fed has a neigh-
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borhood U in which any loop can be shrunk continuously to
a point).

Two paths having the same end points are equivalent if
one can be continuously deformed into the other in A. Equiv-
alence classes of closed paths (loops) based at a point Fed
form a group I1(4,F) called fundamental group (or first ho-
motopy group) at the base point F, under the operation of
composition of paths.

A covering space (4, p) of 4 is a topological space 4 and
a continuous map p:4 — A such that every point Fed has a
path-connected open neighborhood Uwith p~'(U ) nonempty
and each path component of p~'(U) mapped topologically
onto Uby p. Such an open neighborhood is called an elemen-
tary neighborhood.

If 7.1 — Ais a path, then py:I — A4 is a path. Converse-
ly, if 7 is a path in 4 with initial point F, and Fed with
p(F) = F, then there exists a unique path v in A with initial
point F such that py = y.

Thereis a naturalinjectionp. from II(4,F)into I[1(4,F)
called the induced homomorphism. A closed loop ¥ in 4
based at Flifts to a closed loop y in 4 based at Fif and only if
the equivalence class [y] is an element of p. (4, F).

If A is simply connected, it is called a universal covering
space of 4, and has the property that it can serve as a cover-
ing space for any other covering space of 4. Then,

M4,F) = {1}.

Under the condition that A be semilocally simply con-
nected, for any given conjugacy class of subgroups of
I1(4,F), there exists a covering space (4, p) such that
J I1(4,F) belongs to the given conjugacy class. (4, p) is de-
termined up to isomorphism by the conjugacy class. In par-
ticular, under this condition there always exists a universal
covering space (4, p), unique up to isomorphism, corre-
sponding to the conjugacy class of the trivial subgroup. All
manifolds and manifolds with boundary are semilocally sim-
ply connected.

Let 4Y = {F, + - +F, |x,%x€R’, fori# j] bean
N-particle orbit in .#'. The weak topology of ., restricted
to 4 ¢, yields the obvious topology where for &, CR’ open,
i=1,N,and &n0 , =¢fori#j, U, .,

= {F= =Y |F, |x;€0,} is a neighborhood basis for 4 {.
In this topology 4  is connected, pathwise connected, and
semilocally simply connected, and hence possesses a univer-
sal covering space (4, p) .

In Sec. III we noted that for s3> 3 the universal covering
space of A { is the space 4 { = R*¥\ D, while special cases
arisefors = 1 ands = 2. Fors>3, the fundamental group for
A is the permutation group Sy.

B. Sufficient condition for recovering a repre